
R®

Micro-35 Tutorial
Open Research Compiler (ORC) 2.0

and Tuning Performance on Itanium
Presenters:

Roy Ju, Sun Chan, Tin-Fook Ngai
(MRL, Intel Labs)

Chengyong Wu, Yunzhao Lu, Junchao Zhang
(ICT, CAS)

Presented at the 35th International Symposium on Microarchitecture
(Micro-35)

Istanbul, Turkey
November 19, 2002

1

ORC Tutorial
R®

1

Micro-35 Tutorial
Open Research Compiler (ORC) 2.0

and Tuning Performance on Itanium
Presenters:

Roy Ju, Sun Chan, Tin-Fook Ngai
(MRL, Intel Labs)

Chengyong Wu, Yunzhao Lu, Junchao Zhang
(ICT, CAS)

Presented at the 35th International Symposium on Microarchitecture
(Micro-35)

Istanbul, Turkey
November 19, 2002

ORC Tutorial
R®

2

Agenda

• Overview of ORC
• IR – WHIRL and Optimizations
• Overview of CG
• Performance Features in ORC 2.0
• Performance Analysis Tools and Experience
• Demo
• ORC for Speculative Multithreading
• Research Activities and Plan

2

ORC Tutorial
R®

3

Overview of ORC

ORC Tutorial
R®

4

ORC

• Objective: provides a leading open source
IPF (IA-64) compiler infrastructure to the
compiler and architecture research
community

• Requirements:
Robustness
Timely availability
Flexibility
Performance

* IPF for Itanium Processor Family in this presentation

3

ORC Tutorial
R®

5

What’s in ORC?
• C/C++ and Fortran compilers targeting IPF
• Based on the Pro64 (Open64) open source compiler from SGI

Retargeted from the MIPSpro product compiler
open64.sourceforge.net

• Major components:
Front-ends: C/C++ FE and F90 FE
Interprocedural analysis and optimizations (IPA)
Loop-nest optimizations (LNO)
Scalar global optimizations (WOPT)
Code generation (CG)

• On Linux

ORC Tutorial
R®

6

Flow of Open64

Very low WHIRLCG

CGIRCG
Code Generation

4

ORC Tutorial
R®

7

The ORC Project
• Initiated by Intel Microprocessor Research Labs (MRL)
• Joint efforts among

Programming Systems Lab, MRL
Institute of Computing Technology, Chinese Academy of
Sciences
Intel China Research Center, MRL

• Core engineering team: 15 - 20 people
• Received support from the Open64 community and

various users

ORC Tutorial
R®

8

The ORC Project (cont.)
• Development efforts started in Q4 2000
• ORC 1.0 released in Jan ‘02
• ORC 1.1 released in July ‘02
• Accomplishments:

Largely redesigned CG
Enhanced IPA and WOPT
Various enhancements to boost performance
Tools and other functionality

• ORC 2.0 planned early ‘03

5

ORC Tutorial
R®

9

IR – WHIRL and Optimizations

ORC Tutorial
R®

10

Role of IR in Compiler

• Bridge semantic gap from source language to
machine instructions

• Same IR
multiple languages
multiple targets

• Interfaces between compiler components
Well defined input and output

• Medium for IR-based optimizations

6

ORC Tutorial
R®

11

Levels of IR Representation

Hi-level lang. IR Machine Inst

• more program info
• less optimizations expressed
• more variations in constructs
• shorter code sequence

• less program info
• all optimizations expressed
• fewer variations in constructs
• longer code sequence

ORC Tutorial
R®

12

Impact of IR on Optimizations

• Ease of implementation
Info is right at hand
Canonical form reduces implementation complexity

• Ease of debugging
Ability to verify consistency
Well defined input/output

• Compile time efficiency
No need for extra info to help analysis

• Quality of optimizations performed
Well formed IR prevents need to pattern match
Canonical form improves chance to optimize

• Type of optimizations possible
No lost of information when optimization done at the right level

7

ORC Tutorial
R®

13

WHIRL

• An Intermediate Representation of a given user program
• Multiple levels of abstraction

Each level semantically the same
Less information at lower level
Allow optimization to be perform at most appropriate
representation

• Hierarchical
lower level subset of the higher form

• Symbol table
User defined symbols
User defined types

ORC Tutorial
R®

14

WHIRL

• Continuous lowering of IR through each component
Call lowerer to translate to lower level

• Supporting components to
minimize variations in IR form
Avoid duplication of optimization/analysis
functionalities

Simplifier
Preopt

• High WHIRL and up can be raised back to C/Fortran

8

ORC Tutorial
R®

15

Flow of IR

Very low WHIRLCG

CGIRCG
Code Generation

ORC Tutorial
R®

16

Tools for WHIRL

• ir_b2a
Dumps IR in pre/post order form

• whirl2c, whirl2f
Dumps IR in high level C/Fortran form
May not be re-compilable if input is low-WHIRL

• Numerous verifier and self-checkers throughout
compiler

WHIRL consistency
Symbol table and WHIRL consistency

9

ORC Tutorial
R®

17

Tools for WHIRL

• To get IR file after each component:

.N (after LNO or Preopt) -PHASE:c=off:w=off

.O (after Wopt) -PHASE:c=off

.B (after Frontend) -keep

.I (after IPA or Inlining) -keep

ORC Tutorial
R®

18

Normalization – PreOpt

• Runs before IPA, LNO, WOPT
• Prepares and clean up code

Expose more opportunities
Minimize variations in IR forms
Collect supporting info for later phases
• Alias info
• Loop info: trip count, body, induction expression,

…
• SSA slices for IPA summary info

10

ORC Tutorial
R®

19

Simplification (Simplifier)

• Callable at anytime during compilation when
WHIRL is the IR (i.e. before code generator)

• Works on expressions
Constant folding
Reassociation
Simple strength reduction
Canonicalization

• Compiler writer is guaranteed a well formed
expression for any expression he generates

ORC Tutorial
R®

20

Optimization Topics
Switch Case Optimization

• Simple switch cases
Use cascaded if-then-else sequences

• Large switch cases with skewed frequent cases
Hoist most frequent cases outside of switch case

• IR – Very High WHIRL
SWITCH, CASEGOTO

• Implementation advantages
No need for control flow analysis
No need to update control flow structure

11

ORC Tutorial
R®

21

Optimization Topics
Array Dependency Analysis

• Dependency of subscripted variables inside loops
• Model as a system of integer programming

Canonical form for indices to start at 1
Loops must be well form do loops (vs while, repeat)

• IR – ARRAYEXP and DO_LOOP

• High WHIRL
• Implementation advantages

No need for do_loop recognition in that component
Pointer access and array access produces same result

ORC Tutorial
R®

22

Optimization Topics
Data Flow Problems

• Operate over program’s control structure and flow of
data

Simple model of program transfer points
Uniform treatment of memory accesses

• IR – Mid WHIRL
Explicit control transfer
Full address expression form

X [I – 1] [J – 1] &X + (J – 1) * sizeof(X) – (I – 1)

• Implementation advantages
Simpler algorithms for various control dependency data structure
No need to update loop structures after transformation

12

ORC Tutorial
R®

23

Optimization Topics
Memory Disambiguation

• Dependency of given pair of memory accesses
• Memory access variations

Direct
Explicitly indirect
• Pointer dereference

Implicitly indirect
• Structure field access
• ABI requirement (access through global offset table)

• Indirect access manifests as:
&base + offset

ORC Tutorial
R®

24

Optimization Topics
Memory Disambiguation

VH WHIRL Mid WHIRL Low WHIRL Machine Inst
ldid v1 ldid v1 lda &v1adds r1=sp,16

iload ld8 r2=[r1]

• Address taken detrimental to precision
Indirect access interfere with address taken analysis
Reference parameter access after inlining

e.g. &p -> f best if seen as p.f
• Performed when IR is High WHIRL:

LDID object
where object is scalar, struct, field in struct, …

• Implementation advantages
More precise address taken analysis
Overlaps in memory is exactly represented in same IR node

13

ORC Tutorial
R®

25

Optimization Topics
Structure Field Reorder

• Reorders layout of fields inside an aggregate object
• Effectively manipulates base_address + offset
• Implementation considerations

Base address and/or field offset in disguised form
• User code written as such
• Results of optimization (e.g. CSE of offset arithmetic)

sizeof and offset operators in user code
New order must be reflected consistently throughout
user program
• Layout assumptions outside of current compilation unit
• Object preemption rules

ORC Tutorial
R®

26

Optimization Topics
Structure Field Reorder

• IR – Memory chunk type (M) in memory access
e.g. MISTORE – indirect store of memory chunk

• Field ID provided in IR when access is expressed as
individual field operation

• High WHIRL
• Symbol table contains FLD_TAB

Byte offset, bit offset
Other info such as equivalence to another object

14

ORC Tutorial
R®

27

Optimization Topics
Structure Field Reorder

• Implementation advantages
No need to hunter for base address
No need to distinguish between offset and constant in
IR
No restriction on type of optimizations done ahead
• Those optimizations must guarantee consistency

though
Not solved issues
• Need sizeof and offset operators

R®
28

Major Flow of Global Optimizer

15

ORC Tutorial
R®

29

IR inside Global Optimizer
(Wopt)

• WHIRL is NOT an SSA language
• WHIRL is translated into HSSA form inside Wopt
• HSSA is a SSA form, extended to include

Array and indirect memory references
Alias (mod/ref) info as part of the IR
Representation in
• expression trees (coderep)
• Statements (stmtrep)

ORC Tutorial
R®

30

PreOpt

MainOpt

RVI1

RVI2 (Whirl form)RVI2 (Whirl form)

HighWhirl

Mid-Whirl

Low Whirl

Flow of Global OptimizerFlow of Global Optimizer

Mid-Whirl

16

ORC Tutorial
R®

31

Alias: classification and flow free analysis

Major Components of Major Components of PreoptPreopt

Flow sensitive analysis

HSSA

Induction variable recognition

Copy propagation

Dead code elimination

HighWhirlHighWhirl

StmtRepStmtRep, ,

CodeRepCodeRep

ORC Tutorial
R®

32

Major components of Major components of
MainOptMainOpt

Value number full red. elim

Dead code elimination

Expression PRE

HSSAHSSA

PostOptPostOpt

17

ORC Tutorial
R®

33

Major components of Major components of
PostOptPostOpt

Register Variable Identification II

Register Variable Identification I

Bitwise Dead Code Elim.

HSSAHSSA

Low WhirlLow Whirl

ORC Tutorial
R®

34

Detailed IR Lowering

• Various specific lowering of expression occur
during MainOpt

To take better advantage of optimization at hand
Extract/Deposit in replace of LDBITS
Signed-ness of load exposed
&p->i folded to p.I
• Redo address taken analysis

18

ORC Tutorial
R®

35

Value Number Full Redundancy Elim.

• Some redundancy cannot be eliminated by PRE (and
vice versa)

• Fast mechanism to deal with important cases where
PRE misses

Induction coalescing for some important loops
• Experimental phase to evaluate and explore new

ideas (turned on by default)

ORC Tutorial
R®

36

Partial Redundancy Elimination

• Subsumes most major classical optimizations
Common subexpression
Loop invariant code motion
Strength reduction
Code hoisting
Redundancy elimination (partial and full)
Register Promotion (Register variable identification)
Partial dead store elimination

19

ORC Tutorial
R®

37

SSA based PRE
(SSAPRE)

• Result also in SSA form
• Advantage over bit vector approach

Performs on local and global level in one shot
Demand driven enable

• Prioritized worklist
• Re-optimize previously optimized item for secondary effect

Sparse evaluation, demand driven plus result in SSA
• Optimization can stop at any work item

Suitable for use in time sensitive environment (JIT)
• Enable automatic debug/triage tool for the compiler

Optimized code debugging becomes annotation problem
• Code motion done in one shot

Almost linear time algorithm

ORC Tutorial
R®

38

Expression PRE
(EPRE)

• Works on expression level
• Indirect memory operations are treated as other

expressions
Covers indirect memory operations
Arbitrary tree size
Arbitrary levels of indirects

• Easy to expand to other optimizations
Array bounds check elimination
Speculative code motion
…

20

ORC Tutorial
R®

39

Register Variable Identification
(Register Promotion)

• Preparation phase for register allocation
• Problem formulated as PRE problem with lifetime

optimal placement solution
• Advantage over non-PRE approach

Placement not random, but provably lifetime optimal
Easily extensible to resource optimal also

• Advantage over non-SSA approach
Demand driven – controllable compile time
Enable automatic debug/triage tool

ORC Tutorial
R®

40

Register Variable Identification (RVI)

• 3 separate phases of RVI - I
Shares same code as EPRE for 2 phases
• Software reuse

Local register promotion
• Simple scan over all locals

LPRE
• Works on loads of variables

SPRE
• Works on stores of variables

21

ORC Tutorial
R®

41

Register Variable Identification II

• Works on Low-Whirl
Binary level details exposed
• bss segment, gp relative, …

IR closer to machine form
• Load of variable value becomes

Calculate address
Load content through address

• Solves data flow equation over CFG
• Remnants of pre-SSAPRE implementation

Takers, any?

ORC Tutorial
R®

42

Overview of CG

22

ORC Tutorial
R®

43

What’s new in CG?
• CG has been largely redesigned from Open64
• Research infrastructure features:

Region-based compilation
Rich profiling support
Parameterized machine descriptions

• IPF optimizations:
If-conversion and predicate analysis
Control and data speculation with recovery code
generation
Global instruction scheduling with resource management

• Other enhancements

ORC Tutorial
R®

44

Major Phase Ordering in CG

edge/value profiling

region formation

if-conversion/parallel cmp.

loop opt. (swp, unrolling)

global inst. sched. (predicate
analysis, speculation,

resource management)

register allocation

local inst. scheduling

(new)

(existing)

(flexible profiling points)

23

ORC Tutorial
R®

45

Region-based Compilation
• Motivations:

To form profitable scopes for optimizations
To control compilation time and space

• Region:
A directed graph
Connected subset of CFG
Acyclic
Single-entry-multiple-exit
• More general than hyperblocks, treegion, etc

• Regions under hierarchical relations
Regions could be nested within regions

ORC Tutorial
R®

46

Region-based Compilation (cont.)

• Region structure can be constructed and deleted
at different optimization phases

• Optimization-guiding attributes at each region
• Region formation algorithm decoupled from the

region structure
Algorithm posted on ORC web site
Consider size, shape, topology, exit prob., code
duplication, etc.

• Being used to support multi-threading research

24

ORC Tutorial
R®

47

Profiling Support
• Edge profiling at WHIRL in Open64 remained and

extended
• New profiling support added in CG to allow various

instrumentation points
• Types of profiling:

Edge profiling, value profiling, memory profiling, …
• Important for limit study or collecting program statistics
• User model:

Instrumentation and feedback annotation at the same
compilation phase
Later phases maintain valid feedback information through
propagation and verification

ORC Tutorial
R®

48

If-conversion
• Converts control flow (branches eliminated) to

predicated instructions
• A simple design to iteratively detect patterns for

if-conversion candidates within regions
Consider critical path length, resource usage, br mis-
pred. rate & penalty, # of inst., etc.

• Utilizes parallel compare instructions to reduce
control dependence height

• Invoked after region formation and before loop
optimization

• Displaces the hyperblock formation in Open64

25

ORC Tutorial
R®

49

Predicate Analysis
• Analyze relations among predicates and control flow
• Relations stored in Predicate Relation Database (PRDB)
• Query interface to PRDB: disjoint, subset/superset,

complementary, sum, difference, probability, …
• PRDB can be deleted and recomputed as wish without

affecting correctness
• No coupling between the if-conversion and predicate

analysis
• Currently used during the construction of dependence

DAG for scheduling
• Can be used for predicate-aware data flow analysis

ORC Tutorial
R®

50

Global Instruction Scheduling
• Performs on the scope of SEME regions
• Cycle scheduling with priority function based on frequency-

weighted path lengths
• Full resource management by interacting with a micro-

scheduler
• Modularizes the legality and profitability checking
• Includes

Safe speculation across basic blocks
Control and data speculation
Code motion with compensation code
Partial ready code motion
Motion of predicated instructions
…

26

ORC Tutorial
R®

51

Control and Data Speculation
• Features missing in Open64 but added in ORC
• Speculative dependence edges added on DAG
• Selection of speculation candidates driven by

scheduling priority function
• For a speculated load, insert chk and add DAG

edges to ensure recoverability
• Recovery code generation decoupled from

scheduling phase
• Starting from the speculative load, follow flow and

output dependences to re-identify speculated
instructions

• GRA to properly color registers in recovery blocks

ORC Tutorial
R®

52

Parameterized Machine Model
• Motivations:

To centralize the architectural and micro-architectural
details in a well-interfaced module
To facilitate the study of hardware/compiler co-design by
changing machine parameters
To ease the porting of ORC to future generations of IPF

• Read in the (micro-)architecture parameters from KAPI
(Knobsfile API) published by Intel

• Automatically generate the machine description tables in
Open64

• Being ported to Itanium 2

27

ORC Tutorial
R®

53

Micro-Scheduler
• Manages resource constraints

E.g. templates, dispersal rules, FU’s, machine width, …
• Models instruction dispersal rules
• Interacts with the high-level instruction scheduler

Yet to be integrated with SWP
• Reorders instructions within a cycle
• Uses a finite state automata (FSA) to model the resource

constraints
Each state represents occupied FU’s
State transition triggered by incoming scheduling
candidate

• Can be ported to other tools as a standalone phase

R®
54

Performance Features in ORC 2.0

28

ORC Tutorial
R®

55

Performance Features
• Enable optimizations on object fields

Improved eon by ~40%
• Balance between RSE and register spills

Improved perlbmk by > 30 %
• Memory optimizations

Stride prefetching
Reordering of hot/cold struct fields
Conversions to memset/memcpy

• Tuning the cost model for function inlining
• IPA-enabled optimizations

De-virtualization, more uses of gp-rel, procedure reordering,
• Aliasing enhancements: type-based disambiguation

ORC Tutorial
R®

56

Performance Features (cont.)
• Enhancements of instruction scheduling (>3% overall)

A new, more modular implementation
Tuning of scheduling heuristics to enable more speculation
P-ready code motion
Across nested regions; branch “delay slots”; entry and exit
blocks

• Efficient code expansion
Mul/div/rem
Avoid expensive loop unrolling factors
Boolean expressions

• Multiway branch synthesis
• Branch hints

29

ORC Tutorial
R®

57

Performance Features (cont.)
• Restore callee-save registers in a path sensitive manner
• Analysis of load safety to reduce the # of speculative lds
• Bundle chk’s with adjacent instructions into the same

cycles
• Micro-architectural features

Padding of nop’s to avoid pipeline flushes
Taming I-cache padding and code layout
FU-sensitive latency for scheduling
• E.g. 2 cycles for add (I)-> ld vs. 1 cycle for add (M)->

ld
• …
• A large number of enhancements and each contributes a

small gain (often < 0.5%)

ORC Tutorial
R®

58

RSE (Register Stack Engine) Problem
in Perlbmk

• RSE Problem in perlbmk
regmatch: self recursion and using
> 96 registers
Excessive stalls due to RSE
Average call depth: 4

• Current solution
Reduce register usage with spills
Live ranges for stacked registers
ordered
Current usage of stacked registers
in regmatch: 27

0

200,000,000,000

400,000,000,000

600,000,000,000

800,000,000,000

1,000,000,000,000

1,200,000,000,000

1 2

Front pipeline flushes PIPELINE_BACKEND_FLUSH_CYCLE

(est.)cost of DTLB access (est.)Store/store whammo

Accesses to Memory, excl.DTLB (est.)RSE
Scoreboard stalls INST_ACCESS_CYCLE

(est.) Execution

Performance after and before tuning

0

200,000,000,000

400,000,000,000

600,000,000,000

800,000,000,000

1,000,000,000,000

1,200,000,000,000

1 2 3
Front pipeline flushes PIPELINE_BACKEND_FLUSH_CYCLE

(est.)cost of DTLB access (est.)Store/store whammo

Accesses to Memory, excl.DTLB (est.)RSE

Scoreboard stalls INST_ACCESS_CYCLE

(est.) Execution

30

ORC Tutorial
R®

59

Call Stack Graph

Green: behavior of call stack. Red: the frequency of the vertical call depth.

Perlbmk Gap

Vortex Crafty

ORC Tutorial
R®

60

Generalized RSE Solution
(In progress by Yang Liu @ ICT)

• RSE cost related to those paths in call graph with high
invocation frequency and high register pressure

• Formulation: given a fixed number of registers,
distribute them to different functions to minimize the
total spill cost and RSE overflow cost

• Framework: Inlining

Register Estimation

Call Graph Partition and Ordering

RSE Distribution

Intraprocedural GRA

31

ORC Tutorial
R®

61

• Some characteristics of C++ programs
Small member functions, structure copy, virtual function
calls, abstract data class, template functions, …

• Challenges for eon
Insufficient inlining
• Inappropriate symbol attribute and inline heuristic

Overhead introduced by inlining
• Excessive memory copies of structure fields

Traditional optimizations techniques less effective to
structures and fields

• Copy propagation, DCE, folding of field accesses, IVR, …
• Delay the lowering of IR for large structures
• Flatten well organized small structures early

Optimizations for C++ Programs
(by Kai Yu Chen @ ICRC)

ORC Tutorial
R®

62

• Remove unnecessary structure copies through copy
propagation and dead code elimination

• Remove unnecessary field accesses

Optimizations for Structures and Fields
- Examples

S2 = S1;
S3 = S2;
return S3;

return S1;

S1.data = i;
S2 = S1;
j = S2.data;
return j;

return i;

32

ORC Tutorial
R®

63

Measurement for Abstract Penalty

Note: 1. ORC 1.0
2. Enable copy propagation and DSE for struct’s
3. Enable inlining of template functions
4. Disable prefetch and enable CPROP for FP PREG inside loops
5. Enable indirect memory access folding and flatten struct for IVR

Stepanov’s benchmark for measuring abstract penalty

0.880.77Orcc (Note #5)

4.764.24Orcc (Note #4)

7.906.82Orcc (Note #3)

45.9728.62Orcc (Note #2)

63.6748.10Orcc (Note #1)

11.291.37Gcc (-O3, 2.96)
Total Run Time (s)Abstraction Penaltycompiler data

ORC Tutorial
R®

64

Partial Ready Code Motion
(by Shuxin Yang @ ICT)

• Problem: scheduling dependences ready on one
path but not on another

Lost scheduling opportunities
• To schedule aggressively on hot paths by leaving

compensation copies on cold, yet ready paths
• Extended from existing upward code motion

Identify a cutting set to find the nodes
collectively post-dominating the dependences not
ready
Place compensation copies on these nodes

33

ORC Tutorial
R®

65

bb4

bb3bb2
0.9

Partial Ready Code Motion - Example

mov r1=<a const> (sched)

addl r1=r2,r3

ld8 r4=[r1]

Cntl flow
dependence

0.1

bb1

bb4

bb2
0.9

mov r1=<a const> (sched)

ld8 r4=[r1] (sched)

addl r1=r2,r3

ld8 r4=[r1]

0.1

bb1

Motion path

Constraining
dependence

ld8 is p-ready
candidate

ORC Tutorial
R®

66

Enable and Tune Function Inlining
(by Peng Zhao @ U. of Alberta and by Ge Gan & Liping Xue @ ICT)

• Inlining: enables more optimization opportunities
• Guided by profiling feedback

A problem: functions never invoked slipping through
the cost checking and frequently getting inlined

• Taking into account: invocation frequency, sizes of
caller and callee, estimated cycles in callee,

• Lowered hotness threshold to enable more inlining
• Currently ~10% improvement from IPA/inlining

and expecting more

34

ORC Tutorial
R®

67

Memory Optimizations - Stride Prefetching
(by JiaJun Wu & Xiaobing Feng @ ICT)

• ~ 40% of all cycles in SPEC CInt2000 due to data stalls
(cache and DTLB)

• ~80% of the cycles in mcf due to data stalls
• Prefetching can reduce data stalls

But only stride-based prefetching has been effective and
only to fp apps

• Fixed strides observed in some integer apps due to the
patterns in allocation and usage of data objects

• Stride prefetching guided by profiling feedback
Based on the work by Y. Wu, PLDI ’02
Expecting large gains in mcf and some gains in gap and
parser

ORC Tutorial
R®

68

Memory Opt. – Reordering of Structure Fields
(by Li Chen @ICT & William Chen @ ICRC)

• Reorder hot and cold fields in objects to improve the
spatial locality in cache

• Many considerations on legality and profitability
• Example: hottest loop in mcf

While (arc) {
.. node->time
.. node->potential
...
.. node->mark

}

struct node {
long number;
char *ident;
struct node *pred, …
…
cost_t potential;
flow_t flow;
size_t mark;
long time;

}

struct node {
size_t mark;
long time;
cost_t potential;
long number;
char *ident;
struct node *pred, …
…
flow_t flow;

}

35

ORC Tutorial
R®

69

Multiway Branch Synthesis
(by Lixia Liu @ ICRC)

• Utilize the multiway branch feature on IPF
• Issue more than one branch per cycle

E.g. MBB, BBB

• A separate synthesis phase after scheduling
• Branch target has to be bundle aligned

{ BBB:
(p) br B1
(q) br B2

br B3;;
}

(p) br B1;;
(q) br B2;;

br B3;;

R®
70

Performance Analysis Tools and
Experience

36

ORC Tutorial
R®

71

Performance Analysis Tools on IPF

• Tools: an important part of ORC
Automatic testing tools
Cycle counting tools: static and dynamic
pfmon : to access the IA-64 PMU on Linux
VTune: perfromance analyzer from Intel
Visualization tool based on daVinci
Hot path enumeration tool

ORC Tutorial
R®

72

Automatic Testing Tools

• Support various testing (correctness, performance, checkin,
regression, etc.)

• Automatic start (crontab settings) and update the newest
source from a version control system (e.g. CVS)

• Generate reports with comprehensive information.
• Customizable on many aspects:

Optimization levels: O2/O3, +profiling, +IPA, peak mode.
Benchmarks and compilers used.
Compilation modes (cross/native) and running platforms.

37

ORC Tutorial
R®

73

Cycle Counting Tools
• Count cycles caused by stop bits and latencies

Cycles due to dynamic events, e.g. cache misses, not counted.
• Count cycles of pre-selected hot functions.
• Generate reports of comparisons with history data.
• Static cycle counting

Based on annotations in assembly code, e.g. frequency weighted
cycles of each basic block.
Need pre-generated feedback information.

• Dynamic cycle counting
Need additional implementation to

• Insert the definitions of counters into Symtab.
• Find unused registers for instrumentation instructions.

Frequency counted at run time.

ORC Tutorial
R®

74

Sample Assembly Code
// Block: 45 Pred: 44 51 Succ: 46 51
// Freq 22459.0 (feedback) Prob 0.43924 0.56076
// <lentry>
// BB:45 cycle count: 7
.Lt_0_146: // 0x6b0
{ .mmi

.loc 1 578 0
adds r35=8,r32 ;; // [0:578]
ld8 r35=[r35] // [1:578] id:232
nop.i 0 ;; // [:0]

} { .mmi
adds r35=48,r35 ;; // [3:578]
ld8 r35=[r35] // [4:578] id:233
nop.i 0 ;; // [:0]

} { .mib
cmp.eq p0,p11=0,r35 // [6:578]
nop.i 0 // [:0]

(p11) br.cond.dpnt.few .Lt_0_149 ;; // [6:578]
}

// Block: 51 Pred: 50 45 Succ: 52 45
// Freq 22406.0 (feedback) Prob 0.81893 0.18107
//<loop> Part of loop body line 578, head labeled .Lt_0_146
// BB:51 cycle count: 4
.Lt_0_147: // 0x6e0
{ .mmi

.loc 1 641 0
adds r32=16,r32 ;; // [0:641]
ld8 r32=[r32] // [1:641] id:237
nop.i 0 ;; // [:0]

} { .mib
cmp.ne p12,p0=0,r32 // [3:641]
nop.i 0 // [:0]

(p12) br.cond.dpnt.few .Lt_0_146 ;; // [3:641]
}

38

ORC Tutorial
R®

75

Sample Report Generated by the Tool
Comparison with CVS
THIS_TIME: 2-Jul-2002 vs. LAST_TIME: 1-Jul-2002

PU_name THIS TIME LAST TIME DELTA

bzip2:generateMTFValues 4.554E+09 4.554E+09 0.000E+00
bzip2:sendMTFValues 8.250E+08 8.250E+08 0.000E+00
crafty:Evaluate 4.564E+09 4.699E+09 1.355E+08
crafty:FirstOne 1.190E+09 1.190E+09 0.000E+00
crafty:Attacked 8.506E+08 8.884E+08 3.785E+07
gap:CollectGarb 2.302E+08 2.302E+08 0.000E+00
gzip:longest_match 7.222E+09 7.139E+09 -8.334E+07
gzip:deflate 2.697E+09 2.795E+09 9.885E+07
gzip:inflate_codes 3.601E+09 3.601E+09 0.000E+00
. . .
Result:
 TOTAL:17 PASSED:17 FAILED:0
 Degraded:1 Improved:5 Unchanged:11

ORC Tutorial
R®

76

Performance Monitoring and pfmon

• Performance monitoring features on Itanium
A suite of performance monitoring registers
More than 150 events
Advanced features, such as “sampling”

• Methods of performance analysis:
Work load characterization (Event rate monitoring
and Cycle breakdown)
Profiling (PC sampling, EAR sampling, BTB)

• pfmon: monitors runtime behavior of unmodified
binaries

39

ORC Tutorial
R®

77

pfmon – Event Counting

• Count the occurrences of important events
• Example: failed data speculations

pfmon –u –e ALAT_INST_CHKA_LDC.ALL – foo …
pfmon –u –e ALAT_INST_FAILED_CHKA_LDC.ALL
– foo …

• Output:

orcc ALAT_INST_CHKA_LDC.ALL ALAT_INST_FAILED_CHKA_LDC.ALL failed/all
bzip2 1929041132 325549130 16.88%
crafty 494898879 56087 0.01%
eon 4100283083 328561109 8.01%
gap 5218362450 283104235 5.43%
gcc 334475307 23143799 6.92%
gzip 316462073 314647 0.10%
mcf 278918345 3632297 1.30%
parser 7361718884 755482308 10.26%
perlbmk 2368043225 3676097 0.16%
twolf 10867872791 637333338 5.86%
vortex 4541508419 32142975 0.71%
vpr 1385861255 4956940 0.36%

ORC Tutorial
R®

78

pfmon – Cycle Breakdown

• Attributes a reason for every cycle spent.
• Need multiple runs to make a complete breakdown

pfmon -k -u –e CPU_CYCLES, EXECUTION_CYCLE,
PIPELINE_ALL_FLUSH_CYCLE, DTLB_MISSES --
outfile=$res_file

• Output: Cycle Breakdown of perlbmk

0

2E+11

4E+11

6E+11

8E+11

1E+12

1.2E+12

1 2

Execution

Instruction access cycle

Scoreboard stalls

RSE

Accesses to data, excl.DTLB

Store/store whammo

Cost of DTLB access

Backend pipeline flushes

Frontend pipeline flushes

40

ORC Tutorial
R®

79

pfmon – Event based Sampling
• Relating performance problems back to source code.
• Example: D-cache misses causing latencies > 16

cycles
pfmon --dear-smpl-rate=1000 -e
DATA_EAR_CACHE_LAT16 --smpl-file=sample -- ls
/usr

• Output:Entry 0 PID:9239 CPU:0 STAMP:0xe468a2709334 IIP:0x2000000000013750
PMD OVFL: DATA_EAR_CACHE_LAT16(4)

PMD2 : 0x2000000000070dd9

PMD3 : 0x0000000000000011 , Latency 17

PMD17 : 0x2000000000024f30 (slot 0) valid=Y

Entry 1 PID:9239 CPU:0 STAMP:0xe468a270a75d IIP:0x2000000000013580

PMD OVFL: DATA_EAR_CACHE_LAT16(4)

PMD2 : 0x200000000005ace0

PMD3 : 0x0000000000000014 , Latency 20

PMD17 : 0x2000000000013760 (slot 0) valid=Y

ORC Tutorial
R®

80

Intel VTune Performance Analyzer
• Collect performance data on application and system

Hotspots, critical functions
Processor events, e.g. cache misses

• Various collectors with display in graph or table
Counter monitor
Sampling
Call graph

• Use collected info to identify performance bottlenecks
• Experience in finding the deficiencies in compiler

Cannot modify apps’ source code
Performance bottlenecks may be legitimate
Still need much work to map to an root cause

41

ORC Tutorial
R®

81

VTune – Sample Display

ORC Tutorial
R®

82

Visualization Tool

• Based on daVinci: an X-Window visualization tool
from b-novative, a spin-off of University of Bremen.

• ORC can communicate with daVinci and support
interactive examination of graph-based data
structures.

• Various internal data structures visualized in ORC:
Global and regional CFG, region tree
Regional and local (basic block) dependence DAG
Predicate partition graph
CFG visualization tool on assembly code

42

ORC Tutorial
R®

83

Hot Path Enumeration Tool – hpe.pl

• Motivation:
Analyzing assembly code of large PUs is tedious.
Focusing on hot paths only is more effective.

• Uses of the tool:
Find performance hot spots / defects.
Comparison between different compilers.
Comparison between different versions of same
compiler.

ORC Tutorial
R®

84

Hot Path Enumeration – an Example

• Example:
Two loops:
Whole procedure (Loop1)={a,c,d,f,g}
Loop2={b,e}
Hot paths

• In loop1:
path = a, d freq=1
path = a, f, g freq=1
path = a, c, g freq=8

• In loop2:
path = b, e freq=99

a

b c

d e

f

g

10

8

.2 .8

100

99 1

1

9

43

ORC Tutorial
R®

85

Driving the Performance of ORC

• Avoid performance regression
Checkin testing and criteria
Fast investigation of performance degradations.

• Identify new opportunities through continuous
performance analysis

Inspection of assembly code for hot paths in hot
functions
Comparisons between different compilers
Understanding the performance impact of various
enhancements.

ORC Tutorial
R®

86

Investigation of Degradations

• Some methods
Repeat the testing to filter out noises.
Check cycle counts of pre-selected hot functions.
Check the corresponding assembly code.
Make hypothesis on causes, conduct experiments,
and prove or disprove the hypothesis.
Use pfmon to find out the effects of dynamic
events.
…

44

ORC Tutorial
R®

87

Performance Trend Analysis

1.00

1.05

1.10

1.15

1.20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

O3+profiling peak mode

ORC Tutorial
R®

88

Performance Trend Analysis

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

2.10

2.20

2.30

2.40

2.50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

gzip

vpr

gcc

mcf

crafty

parser

eon

perlbmk

gap

vortex

bzip2

tw olf

45

ORC Tutorial
R®

89

Summary: What We Have Learned

• Performance analysis is the base of gaining performance.
• Two steps for understanding and tuning performance

Workload characterization
Profiling

• Tools are important
Reduce the time and tedious manual work needed.
Help understand various aspects of performance

• Methodology also important
Progress in the right direction
Avoid regression

R®
90

Demo

1

ORC Tutorial
R®

1

Use of ORC in Compiler Research for
Speculative Multithreading (SpecMT)

Tin-Fook Ngai @ MRL
Zhaohui Du, Tao Huang*, William Chen @ ICRC

Saisanthosh Balakrishnan @ U. Wisconsin

ORC Tutorial
R®

2

Concept of Speculative Multithreading

SpecMT execution:Original program
execution:

time

A

B

C

Main thread Speculative thread

SpawnSpawn

CommitCommit
speculative speculative

resultsresults

C

BA
Side effects:Side effects:
•• Prefetch dataPrefetch data

into cache into cache
•• ResolveResolve

branches branches

Speculative execution

2

ORC Tutorial
R®

3

Hardware Supports for SpecMT

• Special SpecMT instructions
Fork, kill, etc.

• Speculative execution
Buffering of speculative results
No exception on speculative execution

• Dependence checking
Check for register/memory RAW dependence violation

• Recovery upon misspeculation
Trash all speculative results and re-execute, or
Commit correct results and re-execute only misspeculated
instructions

ORC Tutorial
R®

4

SpecMT Compiler Research Issues

• How to identify and expose every good SpecMT
opportunities in a program?

Good program coverage by SpecMT is essential

• How to analyze and manage thread-level speculation?
Misspeculation cost modeling
Need new probabilistic dependence, alias and value analyses

• How to optimize SpecMT code?
To reduce misspeculation

• How to best tailor for different forms of hardware
supports?

3

ORC Tutorial
R®

5

SpecMT Compiler Research at
Intel/PSL

• To identify opportunistic speculative threads
When and which thread to spawn
Initial focus on loops

• To restructure/transform programs
More SpecMT opportunities, less misspeculation

• To minimize misspeculation penalty
Precompute or predict critical data value before
spawning
Schedule inter-thread dependent instructions far apart

ORC Tutorial
R®

6

Our SpecMT Compiler Platform

ORC Back End

whirl to C
Source translation

Other SpecMT
compiler

Source with SpecMT
directives

ORC Middle End

Misspec. Cost Model

Optimal Code Reordering

SpecMT Formation

SpecMT Selection

ORC Front End

SpecMT Regions

New SpecMT instructions

22--passpass
compilationcompilation

4

ORC Tutorial
R®

7

2-Pass SpecMT Compilation

ORC
Back End

ORC Front End

ORC Middle End

• SpecMT
pre-selection

• Misspec. cost
computation

• Pseudo-
transformation
and optimal
code reordering

ORC
Back End

ORC Front End

ORC Middle End

• SpecMT final
selection

• Transformation
and optimal
cost reordering

• SpecMT
formation

SpecMT regions
and associated

information
(optimal misspec.
costs, size, etc.)

ORC Tutorial
R®

8

• Based on data/control flow dependences and estimated
execution probabilities and costs

• Support different SpecMT hardware models

SpecMT Cost Model

Misspeculation cost
= 1*3 + 0.1*1
= 3.1

Main thread Speculative thread

y = x + …
…
if () z = u + …
…

w = y + …
…
v = w + z

…
x = …
…
u = …

spawn()

1

0.1

5

ORC Tutorial
R®

9

Optimal Code Reordering

• Reorder code before SpecMT spawn point to minimize
misspeculation cost

• Reduce critical path to spawn SpecMT threads early
Main thread

…
…
u = …

x = …
spawn()

Speculative thread

y = x + …
…
if () z = u + …
…

w = y + …
…
v = w + z

0.1

Misspeculation cost
= 0.1*2
= 0.2

ORC Tutorial
R®

10

Changes and Enhancements to ORC (1)

ORC Middle End
• A new SpecMT phase in mainopt

Right after SSA construction, IVR, copy propagation
and first DCE
Build internal dependence graph with estimated
coderep sizes and profile-feedback edge probabilities
Perform code reordering inside the loop body
• Tackling the non-overlapped live range requirement in

ORC SSA
• Handling of motion of partial conditional statements

Insert SpecMT directives as intrinsic calls

6

ORC Tutorial
R®

11

Changes and Enhancements to ORC (2)

ORC Middle End
• Unique loop id assignment

For loop matching in the 2-pass compilation
Propagate preopt loop id to mainopt and reassign loop
id after LNO

• IPA summary of function size information
• LNO: Selective loop unrolling

Including outer loop unrolling

ORC Tutorial
R®

12

Changes and Enhancements to ORC (3)

ORC Backend
• Introduce and schedule new SpecMT instructions

Have similar semantics to existing chk instructions but executed
on B-unit
Minor change to the existing machine model

• Translate SpecMT intrinsic calls from Whirl to SpecMT
instructions in CGIR

• Form SpecMT regions
Both for the SpecMT thread body and for the preparation code
before the fork instruction
Mark SpecMT regions to be
NO_OPTMIZATION_ACROSS_REGION_BOUNDARIES

7

ORC Tutorial
R®

13

Changes and Enhancements to ORC (4)

ORC Backend
• CFO and EBO

Before Region Formation, disable the first CFO stage
and limit EBO within single basic block
Make CFO and EBO being aware of regions with
NO_OPTMIZATION_ACROSS_REGION_BOUNDARIES and
honor the no-optimization attribute
• Check blocks for region memberships

ORC Tutorial
R®

14

Changes and Enhancements to ORC (5)

Whirl2C
• Many fixes to allow source translation of low-level

whirl emitted from main-opt
Skip machine-dependent whirl lowering after the
second DCE

8

ORC Tutorial
R®

15

Our Experience with ORC

• A solid, full featured compiler to start with
• Good and handy supports:

Rich IR and supports: whirl, SSA, regions in CGIR
Profile feedback and IPA
Flexible machine model
Whirl2c

• Major problems w.r.t. our work
Code reordering is complicate with ORC SSA due to its non-
overlapped live range requirement (and we solved part of it)
Limited outer/while-loop optimizations
Current CG phases (including scheduler) do not fully honor
region attributes

• CFO and EBO in CG are not region-based but we made it
region-aware (w.r.t. one key attribute)

46

R®
91

Research Activities and Plan

R®
92

1

Compiler Research on IA-64

Haibo(Jason) Lin

Institute of HPC
Dept. of CS&T, Tsinghua University

2002-11-6 Dept. of CS&T, Tsinghua University2

Agenda

Research on ILP
Performance of SWP
Loops Fail to SWP (SWP Failure)
Solutions to SWP Failure

Research on TLP
OpenMP Research
Project Overview
Some Experiments and Results

2

2002-11-6 Dept. of CS&T, Tsinghua University3

ILP-Performance of SWP

A speedup of 10% (SPEC fp2000)

A speedup of 48% (NPB 2.3-serial)
Speedup(SWP=ON/SWP=OFF)

0

50

100

150

200

250

bt.W cg.W
ep.W ft.W is.W lu.W

mg.W sp.W
average

0
20
40
60
80

100
120
140
160

168.wupwise
171.swim

172.mgrid

173.applu

177.mesa

178.galgel
179.art

183.equake

187.facerec

188.ammp

189.lucas

191.fm
a3d

200.sixtrack
301.apsi

average

2002-11-6 Dept. of CS&T, Tsinghua University4

ILP-SWP Failure

Statistics
4.7% in SPEC fp2000 (3,000 loops)
6.8% in NPB (400 loops)

Cause of SWP failure
Loop too big
− 37% in SPECfp, 20% in NPB-serial

Non-rotating register not enough (general register)
− 63% in SPECfp, 80% in NPB-serial
− Base update TN accounts for non-rotating register

pressure // ld4 r1=[r2],4

3

2002-11-6 Dept. of CS&T, Tsinghua University5

ILP-Solutions to SWP Failure(RSU)

Solution 1-Register Sensitive Unrolling(RSU)
Why unrolling?
− Increasing the number of instructions visible to compiler
− Enabling factional MII(Minimum Initiation Interval)

5 additions / 2 adders MII=5/2=3 cycles
Unroll 2 times MII= 10/2=5 cycles

− Increasing register requirements
Limiting unrolling factor(K)
− Recalculating K According to register requirements
− Increased SWP-ed loops
− May lead to performance decline due to poor schedule

caused by improper unrolling factor

2002-11-6 Dept. of CS&T, Tsinghua University6

ILP-Solutions to SWP Failure(SRA)

Solution 2-Stacked Register Allocation(SRA)
Currently SWP can only use static register as non-
rotating register

Allocate stacked register to TNs which need Non-
rotating register

Static
Stacked
rotating

Stacked
callee

Stacked
caller

Static
Stacked
rotating

Stacked
callee

Stacked
caller

Stacked
Non-rotating

4

2002-11-6 Dept. of CS&T, Tsinghua University7

ILP-Conclusion

SWP failure is mainly caused by insufficient
non-rotating registers
RSU & SRA both provide doable solutions to
SWP failure
RSU may lead to performance decline due to
improper unrolling factor, and sometimes can
not solve SWP failure problem
SRA performs better than RSU by allocating
general register more efficiently

2002-11-6 Dept. of CS&T, Tsinghua University8

TLP-Project Overview

ORC based OpenMP compiler
Goal
− Develop an compiler that produces multithreaded programs

that can explore intra-die(Hyper threading) and inter-dies
(SMP) TLP

Motivation
− Study characteristics of OpenMP itself: how to build up a

high performance implementation
− Find optimizing opportunity for OpenMP implementation

and codes written in OpenMP: find out suitable program
forms to carry on source-level optimization

− A testbed for parallelization: compiling for the SMP
clusters

5

2002-11-6 Dept. of CS&T, Tsinghua University9

TLP-Project Plan

Framework building
A base module support on selected Fortran 77
OpenMP directives
Works relatively well

Extending to OpenMP Fortran API v1.0
Extending to OpenMP Fortran API v2.0
Fortran(v2.0)/C frontend building
Debugging phase for stability and performance

Regression test and performance tuning

2002-11-6 Dept. of CS&T, Tsinghua University10

TLP-Project Progress

OpenMP tranform module
Have the same function as original SGI module, except for
workshare/threadprivate handling(done)

Fortran90 FE
In working. Tuning for final release

C FE
The Lex/Yacc part has been done
The WHIRL transformation module is in working

TO DO
Profiling support for OpenMP performance tuning
Source-level OpenMP parallelization and optimizing
techniques

6

2002-11-6 Dept. of CS&T, Tsinghua University11

TLP-Experiments and Results

An example-BT.W

Platform (Fig. of the right column)
xx-32 : 4 * Xeon 700MHz, 1G Mem, 1.24G network, Linux 2.4.7-10smp
xx-64 : 4 * Itanium2 900MHz, 4G Mem, 1000M network, Linux 2.4.9-18smp

0

200

400

600

800

1000

1200

M
o

p
s/

to
ta

l

gcc[mpi-F] ecc[openmp] efc[openmp-auto] orf90[openmp]

serial-noO3 4cpu-noO3 serial-O3 4cpu-O3

0

200

400

600

800

1000

1200

M
o
p
s/
to
ta
l

gcc[mpi-F] icc/ecc[openmp] ifc/efc[openmp-auto]

serial-32 4cpu-32 serial-64 4cpu-64

2002-11-6 Dept. of CS&T, Tsinghua University12

TLP-Experiments and Results

Conclusion
Compiler optimization is critical for IA-64 based
platform
Parallel compiler is still constrained by its own ability
The performance of Itanium2 SMP + ecc + OpenMP
could be very good
With the best optimizing effort by both programmer
and compiler, the performance of Itanium2 SMP is
6~10 fold over that of Xeon SMP
The performance per MHz (floating point) of
Itanium2 SMP is 4.5~7.5 fold over that of Xeon SMP

7

2002-11-6 Dept. of CS&T, Tsinghua University13

The End

Thanks !

For more information, please mail to:
linhaibo99@mails.tsinghua.edu.cn(ILP)
chenyj99@mails.tsinghua.edu.cn(TLP)

47

ORC Tutorial
R®

93

Research Activities in Academia

• University groups using ORC/Open64 as reported in PACT02
tutorial and in the past

U. Del, U. Minn, U. Ghent, Georgia Tech, U. Maryland,
Rice U., TsingHua U., Peking U., Alberta U., CAS, U. Houston,
Princeton

• More universities and research groups:
MIT, Prof. Saman Amarasinghe

• Predication and scheduling
Lawrence Berkeley Lab

• Global address space language (e.g. upc)
• Adjoint Compiler Technology & Standard project

Fortran 95 Automatic Differentiation Tool

ORC Tutorial
R®

94

Known Publications Based on
ORC/Open64

• Speculative Register Promotion Using Advanced Load Address Table (ALAT)
To appear in the CGO-1 Conference, ’03.

• EPIC Instruction Scheduling Based on Optimal Approaches
1st Annual Workshop on EPIC Architectures and Compiler Technology

• SSA Predicated Execution Code Scheduling on SSA form for Itanium
• Maximizing Pipelined Function Units Usage for Minimum Power Software Pipelining

20-th Int’l Conf. On Computer Design, 02
• A near-optimal instruction scheduler for a tightly constrained variable instruction

set embedded processor
1st Int’l Conf. On Compilers, Architectures, and Synthesis for Embedded Systems, 02

• Engineering a C compiler for the Cognigine cgn1600 Network Processor
Network Processor Conferences, 2002

• Effective Compilation Support for Variable Instruction Set Architecture
Int’l Conf. On Parallel Architecture and Compilation Techniques, 02

• Reuse Distance-Based Cache Hints Selection
8th Int’l Euro-Par Conf. , 02

• SCALEA: A Performance Analysis Tool for Distribution and Parallel Programs
8th Int’l Euro-Par Conf. , 02

• More …

48

ORC Tutorial
R®

95

Checkins and Merges on the Plan

• ORC2.0 early Jan 03 (ICT/ICRC-Intel/PSL-Intel)
• ORC2.0 merge into Open64 soon afterward (U. of

Delaware)
• OpenMP support for 2.96 gcc, orcf90 (TsingHua U.)

V1.0 early next year
V2.0 soon afterward

• U. of Minnesota merge early 03 discussed
• Other merges waiting?

ORC Tutorial
R®

96

Upcoming User Forum

• On the plan
During CGO Conference
Late March, ’03 in San Francisco
Agenda still open
Would like to get suggestions

49

ORC Tutorial
R®

97

Future Plan

• Continued activities at Intel
Programming Systems Lab
• Speculative multithread compilation and

microarchitecture
• Streaming data compilation

Barcelona Lab/UPC
• Multithread compilation

• Continued activity at Chinese Academy of Sciences
Streaming data and network processor compilation

ORC Tutorial
R®

98

Contributions and Acknowledgements
• Institute of Computing Technology, Chinese Academy

of Sciences
• Programming Systems Lab, Intel Labs
• Intel China Research Center, Intel Labs
• Pro64 developers
• Many ORC/Open64 users

