

A Compiler Framework for Speculative Analysis and
Optimizations

Jin Lin Tong Chen Wei-Chung Hsu
Pen-Chung Yew

Department of Computer Science and Engineering
University of Minnesota

Minneapolis, MN 55455 U.S.A

{jin, tchen, hsu, yew}@cs.umn.edu

Roy Dz-Ching Ju Tin-Fook Ngai
Sun Chan

Microprocessor Research Lab.
Intel Corporation

Santa Clara, CA 95052 U.S.A

{roy.ju, tin-fook.ngai, sun.c.chan}@intel.com

ABSTRACT
Speculative execution, such as control speculation and data
speculation, is an effective way to improve program performance.
Using edge/path profile information or simple heuristic rules,
existing compiler frameworks can adequately incorporate and
exploit control speculation. However, very little has been done so
far to allow existing compiler frameworks to incorporate and
exploit data speculation effectively in various program
transformations beyond instruction scheduling. This paper
proposes a speculative SSA form to incorporate information from
alias profiling and/or heuristic rules for data speculation, thus
allowing existing program analysis frameworks to be easily
extended to support both control and data speculation. Such a
general framework is very useful for EPIC architectures that
provide checking (such as advanced load address table (ALAT)
[10]) on data speculation to guarantee the correctness of program
execution. We use SSAPRE [21] as one example to illustrate how
to incorporate data speculation in those important compiler
optimizations such as partial redundancy elimination (PRE),
register promotion, strength reduction and linear function test
replacement. Our extended framework allows both control and
data speculation to be performed on top of SSAPRE and, thus,
enables more aggressive speculative optimizations. The proposed
framework has been implemented on Intel's Open Research
Compiler (ORC). We present experimental data on some
SPEC2000 benchmark programs to demonstrate the usefulness of
this framework and how data speculation benefits partial
redundancy elimination.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors – compiler,
optimization.

General Terms
Algorithms, Performance, Design, Experimentation.

Keywords
Speculative SSA form, speculative weak update, data speculation,
partial redundancy elimination, register promotion.

1. INTRODUCTION
Data speculation refers to the execution of instructions on most
likely correct (but potentially incorrect) operand values. Control
speculation refers to the execution of instructions before it has
been determined that they would be executed in the normal flow
of execution. Both types of speculation are effective techniques to
improve program performance.

Many existing compiler analysis frameworks have already
incorporated and used edge/path information to support control
speculation. Considering the program in Figure 1, the
frequency/probability of the execution paths can be collected by
edge/path profiling at runtime and represented in the control flow
graph. If the branch-taken path (i.e. the condition being true) has a
high probability, the compiler can move the load instruction up
and execute it speculatively (ld.s) before the branch instruction. A
check instruction (chk.s) is inserted at its home location to catch
and recover from any invalid speculation. The ld.s and chk.s are
IA64 instructions that support control speculation [10]. Since the
execution of the speculative load may overlap with the execution
of other instructions, the critical path can be shortened along the
speculated path.

 ….
if (c){
 ld x =[y]
 …
}

(a) original program

ld.s x =[y]
if (c){
 chk.s x, recovery
 next:
 ….
}
recovery:
 ld x=[y]
 br next
(b) speculative version

Figure 1. Using control speculation to hide memory latency.

However, so far there has been little work on how to incorporate
information for data speculation into existing compiler analysis
frameworks to help more aggressive speculative optimizations
beyond instruction scheduling. Traditional alias analysis is non-
speculative and thus cannot facilitate aggressive speculative
optimizations. For example, elimination of redundant loads can
sometimes be inhibited by an intervening aliasing store.
Considering the program in Figure 2(a), the traditional
redundancy elimination cannot remove the second load *p unless
the compiler analysis proves that the expressions *p and *q do not
access the same location. However, through profiling or simple

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PLDI ’03, June 9-11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-662-5/03/0006…$5.00.

heuristic rules, if we know that there is a small probability that *p
and *q will access the same memory location, the second load of
*p can be speculatively removed as shown in Figure 2(b). The
first load *p is replaced with a speculative load instruction (ld.a),
and a check load instruction (ld.c) is added to replace the second
load instruction. If the store of *q does not access the same
location as the load *p, the value in register r32 is used directly
without re-loading *p.

 … = *p
 *q = ..
 … = *p

(a) original program

r31 = p

ld.a r32=[r31]
*q = …
ld.c r32=[r31]
… = r32
(b) speculative version

Figure 2. Redundancy elimination using data speculation.

In this paper, we address the issues of how to incorporate
information for data speculation into an existing compiler analysis
framework and thus enable aggressive speculative optimizations.
We use profiling information and/or simple heuristic rules to
supplement traditional non-speculative compile-time analysis.
Such information is then incorporated into the SSA form.

One important advantage of using data speculation is that it
allows us to use useful but imperfect information or to apply
aggressive but uncertain heuristic rules. For example, if we find
*p and *q are not aliases in the current profiling, it does not
guarantee that they are not aliases under different program inputs
(i.e. input sensitivity). We can only assume speculatively that they
are not aliases when we exploit such profiling information in
program optimizations. This requires data speculation support.

Our extended compiler analysis framework supports both control
and data speculation. Like traditional compiler analysis, control
speculation is supported by examining program control structures
and estimating likely execution paths through edge/path profiling
and/or heuristic rules [1]. In this paper, we will focus on the data
speculation support in the extended framework

Speculative
alias and
dataflow
analysis

Control flow graph
 (control speculation)

Speculative use-def chain/ SSA form
(data speculation)

Speculative optimizations
� SSAPRE based optimizations: PRE for expressions register

promotion, strength reduction, …
� Instruction scheduling
� …

Control flow
analysis

Edge/path
profile

Heuristic
rules

Alias
profile

Heuristic
rules

Figure 3. A framework of speculative analyses and
optimizations.

Figure 3 depicts our framework of speculative analysis and
optimization. This is built on top of the existing SSA framework

in the ORC compiler. While the general framework we proposed
is not restricted to this particular design, we choose it to
exemplify our framework because it includes a set of compiler
optimizations often known as SSAPRE [21]. Many optimizations
problems, such as redundancy elimination, strength reduction, and
register promotion, have been modeled and resolved as PRE
problems. The existing SSAPRE in ORC already supports control
speculation. We extend it by adding data speculation support and
speculative optimizations (see components highlighted in bold in
Figure 3). In our experimental results, we study the effectiveness
of speculative PRE as applied to register promotion.

The rest of this paper is organized as follows: We first give a
survey on related work on data and control speculation, alias
analysis and PRE optimization in section 2. Then, in section 3, we
present our speculative analysis framework in detail. Next, in
section 4, we propose an algorithm that extends SSAPRE to
perform both data and control speculation using the speculative
analysis results. Section 5 presents some experimental results on
the speculative PRE. Finally, section 6 concludes this paper by
summarizing our contributions.

2. RELATED WORK
Several recent studies have tried to use control and data
speculation to help program analysis and compiler optimizations
such as instruction scheduling, PRE, register promotion and alias
analysis.

For example, Ju et al. [17] proposed a unified framework to
exploit both data and control speculation targeting specifically for
memory latency hiding. The speculation is exploited by hoisting
load instructions across potentially aliasing store instructions or
conditional branches, thus allow memory latency of the load
instruction to be hidden. In contrast, our proposed framework is a
general framework that can exploit a larger set of optimizations,
such as those in PRE and instruction scheduling, by utilizing
general profiling information or incorporating general heuristic
rules.

PRE is a powerful optimization technique first developed by
Morel et al [26]. The technique removes partial redundancy in
programs by solving a bi-directional system of data flow
equations. Knoop et al. [23] proposed an alternative PRE
algorithm called lazy code motion that improves on Morel et al ’s
results by avoiding unnecessary code movement and removing the
bi-directional nature of the original PRE data flow equations. The
system of equations suggested by Dhamdhere in [8] is weak bi-
directional and have the same low computational complexity as
uni-directional ones. Chow et al. [6, 21] was the first one to
propose an SSA framework to perform PRE, which used the lazy
code motion formulation for expressions. Lo et al. [25] extended
the SSAPRE framework to handle control speculation and register
promotion. Bodik et al. [3] proposed a path profile guided PRE
algorithm to handle control speculation so that it enables the
complete removal of redundancy along more frequent paths at the
expense of additional computation along less frequently executed
paths. Kenendy et al. [20] used the SSAPRE framework to
perform strength reduction and linear function test replacement. A
recent study by Dulong et al. [11] suggested that PRE can be
extended to remove redundancy using both control and data
speculation, but no systematic design were given. In our prior
work [24], we studied the use of the Advanced Load Address

Table (ALAT), a hardware feature to support data speculation
defined in the IA-64 architecture, for speculative register
promotion. An algorithm for speculative register promotion based
on PRE was presented.

In this paper, we show that using our proposed framework,
SSAPRE can be extended to handle both data and control
speculation using alias profiling information and/or simple
heuristic rules. Some of our extensions to handle data speculation
in SSAPRE are similar to the approach used in [20] for strength
reduction. The speculative weak update concept described in this
paper corresponds to the injuring definition and the generation of
speculative check instructions corresponds to the repair code in
[20]. On the other hand, our work builds a unified speculation
framework to allow SSAPRE be easily extended to incorporate
both data and control speculation.

Most of the proposed alias analysis algorithms [13, 29, 28, 14, 9]
categorize aliases into two classes: must alias or definite points-to
relation, which holds for all execution paths, and may aliases or
possible points-to relation, which may hold for at least one
execution path. However, they did not include the information of
how likely such may aliases may occur during the program
execution. Such information is very crucial in data speculative
optimizations.

Recently, there has been some studies on speculative alias
analysis and probabilistic memory disambiguation. Fernandez
[12] described some approaches that use speculative may alias
information to optimize code. They gave some experimental data
on the precision and the mis-speculation rates in their speculative
analysis results. Ju. et al.[16] proposed a method to calculate the
alias probability among array references in application programs.
Hwang et al. [15] proposed a probabilistic point-to analysis
technique to compute the probability of each point-to relation. It
could be used to guide the calculation of alias probability among
pointer references. The memory reference profiling proposed by
Wu et al [30] can also be used to calculate the alias probability
based on a particular input. However, such profiling can be very
expensive since every memory reference needs to be monitored
and compared pair-wise. It could slow down the program
execution by order of magnitude during the profiling phase.
Compared to their approaches, we use a lower cost alias profiling
scheme to estimate the alias probability. In addition, when alias
profiling is unavailable, we use a set of heuristic rules to quickly
approximate alias probabilities in common cases.

3. SPECULATIVE ANALALYSIS
FRAMEWORK
In this study, we assume the result of the dataflow analysis is in
the SSA form. In SSA, each definition of a variable is given a
unique version number. Different versions of the same variable
can be regarded as different program variables. Each use of the
variable can only refer to a single reaching definition of some
version of that variable. When several definitions of a variable, a1,
a2, …,an-1, reach a merge point in the control flow graph, a φ
function is inserted to merge them into the definition of a new
version an, i.e. an ← φ (a1, a2, …, an-1). Thus, the semantic of single
assignment is preserved.

The introduction of a new version as the result of a φ function can
factor the set of use-def edges over merge nodes, and thus reduce

the number of use-def edges needed. The basic SSA form was
originally crafted for scalar variables in sequential programs.
Recently, it has been extended to cover indirect pointer
references [5] and arrays [22].

In this paper, we further specify how likely an alias relation may
exist at runtime among a set of scalar variables and indirect
references. Such information is then incorporated into an
extended SSA form to facilitate data speculation in later program
optimizations. The reader is referred to [5, 19] for a full
discussion on the SSA form for indirect memory accesses.

3.1 Basic Concepts
Our speculative SSA form is an extension of the HSSA form
proposed by Chow et al [5, 19]. The traditional SSA form [7] only
provides use-def factored chain for the scalar variables. In order
to accommodate pointers, Chow et al proposed the HSSA form
which integrates the alias information directly into the
intermediate representation using explicit may modify operator
(χ) and may reference operator (µ). In the HSSA form, virtual
variables are first created to represent indirect memory references.
The rule that governs the assignment of virtual variables is that all
indirect memory references that have similar alias behaviors in
the program are assigned a unique virtual variable. Thus, an alias
relation could only exist between real variables (i.e. original
program variables) and virtual variables. In order to characterize
the effect of such alias relations, the χ assignment operator and
the µ assignment operator are introduced to model the may modify
and the may reference relations, respectively.

In our proposed framework, we further introduce the notion of
likeliness to such alias relations, and attach a speculation flag to
the χ and µ assignment operators according to the following rules:

Speculative update χs: A speculation flag is attached to a χ
assignment operator if the χ assignment operator is highly likely
to be substantiated at runtime. It indicates that this update is
highly likely and can’t be ignored.

Speculative use µs: A speculation flag is attached to a µ
assignment operator if the µ operator is highly likely to be
substantiated at runtime. It indicates that the variable in the µ
assignment operator is highly likely to be referenced during the
program execution.

The compiler can use the profiling information and/or some
heuristic rules to specify the degree of likeliness for an alias
relation. For example, the compiler can regard an alias relation as
highly likely if it exists during profiling, and attach speculation
flags to the χ and µ assignment operators accordingly. These
speculation flags can help to expose opportunities for data
speculation.

Example 1 shows how to build a use-def chain speculatively by
taking such information into consideration. In this example, v is a
virtual variable to represent *p, and the numerical subscript of
each variable indicates the version number of the variable.
Assume variables a and b are potential aliases of *p. The fact that
the variables a and b could be potentially updated by the *p store
reference in s1 is represented by the χ operations on a and b after
the store statement.

We further assume that according to the profiling information, the
indirect memory reference *p is highly likely to be an alias of the

variable b, but not of the variable a, at runtime. Hence, we could
attach a speculation flag for χs(b1) in s3 because the update to b
caused by the potential store *p is also highly likely to be
executed. Similarly, *p in s8 will also be highly likely to reference
b, and we can attach a speculation flag for µs(b2) in s7.

Example 1

 s0: a1 = …
s1: *p1 = 4
s2: a2← χ (a1)
s3: b2← χ (b1)
s4: v2← χ (v1)
s5: … = a2
s6: a3= 4
s7: µ(a3), µ(b2), µ(v2)
s8: … = *p1

(a) traditional SSA graph

s0: a1 = …
s1: *p1 = 4
s2: a2← χ (a1)
s3: b2← χs (b1)
s4: v2← χ (v1)
s5: … = a2
s6: a3= 4
s7: µ(a3), µ s(b2), µ(v2)
s8: … = *p1

(b) speculative SSA graph

The advantage of having such likeliness information is that we
could speculatively ignore those updates that do not carry the
speculation flag, such as the update to a in s2, and consider them
as speculative weak updates. When the update to a in s2 is
ignored, the reference of a2 in s5 becomes highly likely to use the
value defined by a1 in s0. Similarly, because *p is highly likely to
reference b in s8 (from µs(b2) in s7), we can ignore the use of a3
and v3 in s7, and conclude that the definition of *p in s1 is highly
likely to reach the use of *p in s8.

From this example, we could see that the speculative SSA form
could contain both traditional compiler analysis information and
speculation information. The compiler can use the speculation
flags to conduct speculative optimizations.

3.2 Speculative Alias Analysis and Dataflow
Analysis

♦ Equivalence class based alias analysis
♦ Create χ and µ list

� Generate the χs and µs list based on
alias profile

� In the absence of alias profile,
generate the χs and µs list based on
heuristic rules

♦ Construct speculative SSA form
♦ Flow sensitive pointer alias analysis

Figure 4. A Framework of Speculative Alias and Dataflow
Analysis.

Figure 4 shows a basic framework of the alias analysis and the
dataflow analysis with the proposed extension to incorporate
speculation flags to the χ and µ assignment operators using
profiling information and/or heuristic rules.

In this framework, we can use the equivalence class based alias
analysis proposed by Steensgard [28] to generate the alias
equivalence classes for the memory references within a procedure.
Each alias class represents a set of real program variables. Next,

we assign a unique virtual variable for each alias class. We also
create the initial µ list and χ list for the indirect memory
references and the procedure call statements.

The rules of the construction of µ and χ lists are as follows: (1)
For an indirect memory store reference or an indirect memory
load reference, its corresponding χ list or µ list is initialized with
all the variables in its alias class and its virtual variable. (2) For a
procedure call statement, the µ list and the χ list represent the ref
and mod information of the procedure call, respectively.

Using alias profiling information and/or heuristic rules, we
construct the χs and µs lists. In the next step, all program variables
and virtual variables are renamed according to the standard SSA
algorithm [7]. Finally, we perform a flow sensitive pointer
analysis using factored use-def chain to refine the µs list and the χs
list. We also update the SSA form if the µs and χs lists have any
change.

In the following sections we give more detailed description on
how to construct speculative SSA form using alias profile and
heuristic rules.

3.2.1 Construction of Speculative SSA Form Using
Alias Profile
We use the concept of abstract memory locations (LOCs) [13] to
represent the points-to targets in the alias profile. LOCs are
storage locations that include local variables, global variables and
heap objects. Since heap objects are allocated at runtime, they do
not have explicit variable names in the programs1. Before
profiling, the heap objects are assigned a unique name according
to a naming scheme. Different naming schemes may assume
different storage granularities [4].

For each indirect memory reference, there is a LOC set to
represent the collection of memory locations accessed by the
reference at runtime. In addition, there are two LOC sets to
represent the side effect information, such as modified and
referenced locations, respectively, at each procedure call site.

The rules of assigning a speculation flag for χ and µ list are as
follows:

χs:

Given an indirect memory store reference and its profiled LOC
set, if any of the member in its profiled LOC set is not in
its χ list, add the member to the χ list using the speculation
update χs. If the member is in its χ list, then a speculation
flag is attached to its χ operator (thus becoming a
speculative update χs).

µs:

Given an indirect memory load reference and its profiled LOC
set, if any of the member in its profiled LOC set is not in
its µ list, add the member to the µ list using the speculative
use µs. If the member is in its µ list, then a speculation flag
is attached to its µ operator (thus becoming a speculative
use µ s).

1 For this same reason, the µ and χ lists may not contain a heap

object.

3.2.2 Construction of Speculative SSA Form Using
Heuristic Rules
In the absence of alias profile, compiler can also use some
heuristic rules to assign the speculation flags. The heuristic rules
discussed here are based on the pattern matching of syntax tree.
We present three possible heuristic rules used in this approach:

1. The two indirect memory references with an identical
address expression are assumed highly likely to hold the
same value.

2. The two direct memory references of the same variable are
assumed highly likely to hold the same value.

3. Since we do not perform speculative optimization across
procedure calls, the side effects of procedure calls obtained
from compiler analysis are all assumed highly likely.
Hence, all χ definitions in the procedure call are changed
into χs. The µ list of the procedure call remains unchanged.

The above three heuristic rules imply that all updates caused by
statements other than call statements between two memory
references with the same syntax tree can be speculatively ignored.
Using a trace analysis on SPEC2000 integer benchmark, we found
that these three heuristic rules are quite satisfactory with
surprisingly few mis-speculations.

4. SPECULATIVE SSAPRE FRAMEWORK
In this section, we show how to apply the speculative SSA form
for speculative optimizations. We use SSAPRE [21] because it
includes a set of optimizations that are important in most
compilers. The set of optimizations in SSAPRE include: partial
redundancy elimination for expressions, register promotion,
strength reduction and linear function test replacement. We first
give a quick overview of the SSAPRE framework. Then, we
present an extension to incorporate both data and control
speculation.

4.1 Overview
Most of the work in PRE is focused on inserting additional
computations in the least likely execution paths. These additional
computations cause partial redundant computations in most likely
execution paths to become fully redundant. By eliminating such
fully redundant computations, we can then improve the overall
performance.

We assume all expressions are represented as trees with leaves
being either constants or SSA renamed variables. For indirect
loads, the indirect variables have to be in SSA form in order for
SSAPRE to handle them. Using an extended HSSA form
presented in [5], it can uniformly handle indirect loads together
with other variables in the program.

SSAPRE performs PRE one expression at a time, so it suffices to
describe the algorithm with respect to a given expression. In
addition, the SSAPRE processes the operations in an expression
tree using a bottom-up order. The SSAPRE framework consists of
six separate steps [21]. The first two steps, φφφφ-Insertion and
Rename, construct an expression SSA form using a temporary
variable h to represent the value of an expression. In the next two
steps, DownSafety and WillBeAvailable, we select an appropriate
set of merge points for h that allow computations to be inserted.
In the fifth step, Finalize, additional computations are inserted in
the least likely paths, and redundant computations are marked

after such additional computations are inserted. The last step,
CodeMotion, transforms the code and updates the SSA form in
the program.

In standard SSAPRE, control speculation is suppressed in order to
ensure the safety of code placement. Control speculation is
realized by inserting computations at the incoming paths of a
control merge point φφφφ whose value is not downsafe (e.g. its value
is not used before it is killed) [25]. The symbol φφφφ is used to
distinguish the merge point in the expression SSA form which is
different from the merge point φ in the original SSA form. Since
control speculation may or may not be beneficial to overall
program performance, depending on which execution paths are
taken frequently, the edge profile of the program can be used to
select the appropriate merge points for insertion.

The Rename step plays an important role in facilitating the
identification of redundant computations in the later steps. In the
original SSAPRE without data speculation, such as the example
shown in Figure 5(a), two occurrences of an expression a have the
same value, hence, its temporary variable h are assigned the same
version number for those two references. Since they have the
same value, the second occurrence is redundant to the first one,
thus, the second load can be replaced with a register access.
“h1←” in Figure 5(a) means a value is to be stored into h1.

However, if there is a store *p that may modify the value of the
expression a, the second occurrence of a is not redundant and
should be assigned a different version number, as shown in Figure
5(b). In Figure 5(b), the traditional alias analysis will report that
this assignment to *p may kill the value of the first occurrence of
a.

Now, as in Figure 5(c), if the speculative SSA form indicates that
the alias relation between the expression of a and *p is not likely,
we can speculatively assume that the potential update to a due to
the alias relationship to *p can be ignored. The second occurrence
of a is regarded as speculatively redundant to the first one, and a
check instruction is inserted to check whether the value of a is
changed before the second occurrence of a (This can be done, for
example, by inserting a ld.c instruction on the IA-64 architecture
[10]). The register that contains the value in the first occurrence
can be used in the second occurrence, instead of reloading it. By
speculatively ignoring those updates, we expose speculative
redundancy between those two occurrences of the expression a.

 a [h1←]

 a [h1]

(a) redundant

 a [h1←]

 *p← may modify a

 a [h2←]

 (b) not redundant

 a [h1←]

 *p ← may modify a;
a check statement to check
whether a is changed;

 a [h1]
(c)speculatively redundant

Figure 5. Types of occurrence relationships
 (h is temporary variable for a).

Thus, the SSA form built for the variable a by the φφφφ-Insertion and
Rename steps can exhibit more opportunities for redundancy

elimination if it is enhanced to allow data speculation. The
generation of check statements is performed in CodeMotion. The
CodeMotion step also generates the speculative load flags for
those occurrences whose value can reach the check statements
along the control flow paths. The changes to support data
speculation in SSAPRE framework are confined to φφφφ-Insertion,
Rename and CodeMotion steps.

We now give more detailed description on the extension to
incorporate data speculation in the SSAPRE framework. The
reader is referred to [21] for a full description of the foundation of
SSAPRE.

4.2 φφφφ-Insertion Step
One purpose of inserting φφφφ’s for the temporary variable h of an
expression is to capture all possible insertion points for the
expression. Inserting too few φφφφ’s will miss some PRE
opportunities. On the other hand, inserting too many φφφφ’s will
have an unnecessarily large SSA graph to be dealt with.

As described in [21,6], φφφφ’s are inserted according two criteria.
First, φφφφ’s are inserted at the Iterated Dominance Frontiers (DF+)
of each occurrence of an expression [21]. Secondly, a φφφφ can be
inserted where there is a φ for a variable contained in the
expression, because it indicates a change of value for the
expression that reaches the merge point. The SSAPRE framework
performs this type of φφφφ insertion in a demand-driven way. An
expression at a certain merge point is defined as not anticipated if
the value of the expression is never used before it is killed, or
reaches an exit. A φφφφ is inserted at a merge point only if its
expression is partially anticipated [21], i.e. the value of the
expression is used along one control flow path before it is killed.

For a not-anticipated expression at a merge point, if we could
recognize that its killing definition is a speculative weak update,
the expression can become partially-anticipated speculatively,
thus its merge point could potentially be a candidate for inserting
computations to allow a partial redundancy to become a
speculative full redundancy.

 s0: … = a1
s1: if (…){
s2: *p1=…
s3: a2 ←χ (a1)
s4: b2 ←χs (b1)
s5: v2 ←χs (v1)
 }
s6: a3 ←φ (a1, a2)
s7: b3 ←φ (b1, b2)
s8: v3 ←φ (v1, v2)
s9: *p1=…
s10: a4 ←χ (a3)
s11: b4 ←χs (b3)
s12: v4 ←χs (v3)
s13: … = a4

(a) original program

s0: … = a1 [h]
s1: if (…){
s2: *p1=…
s3: a2 ←χ (a1)
s4: b2 ←χs (b1)
s5: v2 ←χs (v1)
 }
s6: a3 ←φ (a1, a2)
s7: b3 ←φ (b1, b2)
s8: v3 ←φ (v1, v2)
s9: *p1=…
s10: a4 ←χ (a3)
s11: b4 ←χs (b3)
s12: v4 ←χs (v3)
s13: … = a4 [h]

 (b) after traditional φ
insertion

s0: … = a1 [h]
s1: if (…){
s2: *p1=…
s3: a2 ←χ (a1)
s4: b2 ←χs (b1)
s5: v2 ←χs (v1)
 }
s6: h ←φφφφ (h, h)
s7: a3 ←φ (a1, a2)
s8: b3 ←φ (b1, b2)
s9: v3 ←φ (v1, v2)
s10: *p1=…
s11: a4 ←χ (a3)
s12: b4 ←χs (b3)
s13: v4 ←χs (v3)
s14: … = a4 [h]
 (c) after enhanced φ
insertion

Figure 6. Enhanced φφφφ insertion allows data speculation.

Figure 6 gives an example of this situation. In this example, a and
b are may alias to *p. However, b is highly likely to be an alias of
*p, but a is not likely to be an alias of *p. Hence, without any data
speculation in Figure 6(a), the value of a3 in s6 cannot reach a4 in
s13 because of the potential *p update in s9, i.e. a3 is not
anticipated at the merge point in s6. Hence, the merge point in s6
is no longer considered as a candidate to insert computations
along the incoming paths as shown in Figure 6(b).

Since a is not likely to be an alias of *p, the update of a4 in s10
can be speculatively ignored, the expression a3 can now reach a4
in s13. Hence, a3 in s6 becomes speculatively anticipated, and we
could insert a φφφφ for temporary variable h as shown in Figure 6(c).

Appendix A gives the extended version of the φφφφ-Insertion step that
handles data speculation. The parts that differ form the original
algorithm [21] are highlighted in bold.

4.3 Rename Step
In the previous subsection, we show how the φφφφ-insertion step
inserts more φφφφ’s at the presence of may-alias stores, creating more
opportunities for inserting more computations. In contrast, the
Rename step assigns more occurrences of an expression to the
same version of temporary variable h and allows more
redundancies to be identified. The enhancement to the Rename
step is to deal with speculative weak updates and speculative uses.

Like traditional renaming algorithms, the renaming step keeps
track of the current version of the expression by maintaining
rename stack while conducting a preorder traversal of the
dominator tree of the program. Upon encountering a new
expression occurrence q, we trace the use-def chain to determine
whether the value of the expression p on top of rename stack can
reach this new occurrence. If so, we assign q with the same
version as that of the expression p. Otherwise, we check whether
q is speculative redundant to p by ignoring the speculative weak
update and continuing tracing upward along the use-def chain. If
we eventually reach the expression p, we speculatively assign q
with the same version as given by the top the rename stack and
annotate q with a speculation flag in order to enforce the
generation of check instruction for expression q later in the code
motion step. If the value of p cannot reach q, we stop and assign a
new version for q. Finally, we push q onto the rename stack and
proceed.

 … = a
1
 [h

1
]

*p
1
 = …

v
2 ←χ (v

1
), a

2 ←χ (a
1
)

 b
2 ←χ (b

1
)

… = a
2
 [h

2
]

(a) traditional renaming

… = a
1
 [h

1
]

*p
1
 = …

v
4 ←χ (v

3
), a

2 ←χ (a
1
)

 b
2 ←χs (b

1
)

… = a
2
 [h

1
<speculation>]

(b) speculative renaming

Figure 7. Enhanced renaming allows data speculation.

Figure 7 gives an example that shows the effect of enhanced
renaming. In this example, there are two occurrences of the
expression a that are represented by the temporary variable h. The
alias analysis shows that expression *p and a may be aliases.
Variable a may be updated after the store of *p, and is represented

by the χ operation in the SSA form. These two occurrences of a
are assigned with different version numbers in the original
Rename step. However, in our algorithm, if p does not point to a
(either by alias profile and/or heuristic rules), the χ operation with
a is not marked with χs, so this update can be ignored in the
Rename step. In Figure 7 (b), the second occurrence of a is
speculatively assigned with the same version number as the first
one. In order to generate the check instruction in the CodeMotion
step, the second occurrence of a is annotated with a speculation
flag. So our algorithm successfully recognizes that the first and
the second real occurrences of a are in the same version by
ignoring the speculative weak update caused by the indirect
reference *p.

4.4 CodeMotion Step
The CodeMotion step introduces a new temporary variable t,
which is used to realize the generation of assignment statements
and uses of temporary variable h [21]. With data speculation, this
step is also responsible for generating speculative check
statements.

The speculative check statements can only occur at places where
the occurrences of an expression are partially anticipated
speculatively. At the same time, multiple speculative check
statements to the same temporary variable should be combined
into as few check statements as possible.

The speculative check statements are generated in the main pass
of CodeMotion. Starting from an occurrence a with a speculation
flag in a use-def chain (shown as “a2 [h1 <speculation flag>]”in
Figure 8(a)), we reach the first speculatively weak update (i.e. “a2
←χ(a1)” in Figure 8(a)). A speculative check statement is
generated if it has not been generated yet. In our ORC
implementation, actually an advance load check flag is attached to
the statement first as shown in Figure 8(b), and the real
speculative check instruction, i.e. ld.c, is generated later in the
code generation phase.

The occurrences of the temporary variable h that are marked with
“←” are annotated with an advanced load flag (as shown in
Figure 8(b)) if the value of those occurrences can reach their
speculative check statements. An actual ld.a instruction will be
then generated in the later code generation phase.

In Appendix B we give the extended version of the CodeMotion
step that handles data speculation.

 … = a
1
 [h

1←]
*p

1
 = …

v
4
 ←χ (v

3
)

a
2 ←χ (a

1
)

b
4 ←χ

s
 (b

3
)

… = a
2
 [h

1
<speculation flag>]

(a)Before Code Motion

t
1
 = a

1
 (advance load flag)

… = t
1

*p
1
 = …

v
4
 ←χ (v

3
)

a
2 ←χ (a

1
)

b
4 ←χ

s
 (b

3
)

t
4
 = a

2
 (advance load check flag)

… = t
4

(b) Final Output

Figure 8. An example of speculative load and check
generation.

5. EXPERIMENTAL RESULTS
We have implemented our speculative PRE algorithm in the Open
Research Compiler (ORC) [18], version 1.1. The SSAPRE with
control speculation is already implemented in ORC. Our
implementation extends their work by including data speculative
analysis and optimizations. In this section, we study the
effectiveness of speculative PRE as applied to register promotion.
Speculation in software pipelining is not included in the current
implementation. We measure the effectiveness of our techniques
using eight SPEC2000 benchmarks executed with the reference
inputs. The benchmarks are compiled at the –O3 optimization
level with type-based alias analysis [9]. The measurements were
performed on an HP workstation i2000 equipped with one
733MHz Itanium processor and 2GB of memory running Redhat
Linux 7.1. We report on the reduction of dynamic loads, the
execution time speedup over –O3 performance, and the data mis-
speculation ratio collected by the pfmon tool [27].

5.1 The Performance Opportunity Exhibited
in a Procedure
We first use a relatively simple but time critical procedure, smvp,
in the equake program to demonstrate the performance
opportunity of our implemented speculative PRE optimization.
Procedure smvp shown in Figure 9 takes nearly 60% of the total
execution time of equake. There are many memory references of
similar patterns in the inner loop, and we show three statements in
this example to illustrate the speculative register promotion
opportunities. In this example, the load operations of array ***A
(i.e. A[][][]) and **v are not promoted to registers because the
**w references are possibly aliased with them as reported in the
compiler alias analysis. However, these load operations can be
speculatively promoted into registers.

 void smvp(int nodes, double ***A, int *Acol, int *Aindex,
double **v, double **w) {
. . .
 for (i = 0; i < nodes; i++) {
 . . .
 while (Anext < Alast) {
 col = Acol[Anext];
 sum0 += A[Anext][0][0] *…
 sum1+= A[Anext][1][1] *…
 sum2+= A[Anext][2][2] *…
 w[col][0] += A[Anext][0][0]*v[i][0] + …
 w[col][1] += A[Anext][1][1]*v[i][1] + …
 w[col][2] += A[Anext][2][2]*v[i][2] + …
 Anext++;
 }
 }
}

Figure 9. Example code extracted from procedure smvp.

According to our alias profile feedback, these potential aliasing
never actually occur at runtime. Hence, it would be profitable to
speculatively promote ***A and **v to registers. Furthermore, all
**v references can be treated as loop invariants and speculatively
hoisted out of the inner loop. As a result, 39.8% of all load

operations in this procedure can be replaced by check
instructions.

After our speculative register promotion transformation,
procedure smvp is 6% faster than the base version. As a reference
point, a manually tuned smvp, which allocates the aforementioned
candidates to registers without generating any check instructions2,
can be 14% faster than the base version. This indicates that we
should be able to gain a lot more from procedure smvp. After
inspecting the generated Itanium code sequence, we learn that our
transformation replaces regular floating point loads by check
instructions (ldfd.c), and the current instruction scheduler in ORC
does not effectively schedule floating point load check
instructions. Some tuning in the instruction scheduler could
significantly boost the performance of the transformed smvp.

5.2 Experimental Data for Eight SPEC2000
Benchmarks
We now examine the effectiveness of speculative register
promotion for each benchmark relative to its base case, which is
already highly optimized with the –O3 compiler option and type-
based alias analysis.

In general, speculative register promotion shortens the critical
paths by promoting the values of load operations into registers
and replacing redundant loads by data speculation checks. Since
an integer load has a minimal latency of 2 cycles (L1 Dcache hit
on Itanium), and a floating-point load has a minimal latency of 9
cycles (L2 Dcache hit)3, and a successful check (ld.c or ldfd.c)
cost 0 cycles, the critical path could be significantly reduced as
long as the speculations are successful.

0 .0%
2.0%
4.0%
6.0%
8.0%

10.0%
12.0%
14.0%
16.0%

am
m

p ar
t

eq
ua

ke
bz

ip2 gz
ip

m
cf

pa
rs

er
tw

olf

Im
p

ro
ve

m
en

t
p

er
ce

n
ta

g
e

cpu cycle da ta a ccess cycle loads re tired

Figure 10. Performance improvement of speculative register
promotion using alias profiles.

The first metric is the percentage of load operations reduced by
speculative register promotion at runtime. We also measure the
reduction in total CPU cycles and the cycles attributed to data
access. Figure 10 shows results from eight SPEC 2000 programs
from our implementation. The data show that our speculative
register promotion based on alias profiles can significantly
reduces retired load operations. Among the eight programs, art,

2 Since there is no aliasing observed during run-time, the

optimistic code runs correctly when the same input set is used.
3 On Itanium, floating point loads fetch data from the L2 data

cache

ammp, equake, mcf, and twolf have between 5% to 14% reduction
on load operations. The reduction of loads in turn reduces data
access cycles and CPU cycles.

As can be observed from Figure 10, the reduction of loads may
not directly translate into execution time improvement. For
example, 6% of loads reduction in mcf only achieves 2% of
execution time speedup. This is because the reduced loads are
often cache-hit operations, thus having a smaller impact on
performance for programs suffering from frequent data cache
misses.

In Figure 11, we report the percentage of dynamic check loads
over the total loads retired, which indicates the amount of data
speculation opportunities having been exploited in each program.
We also report the percentage of load checks that failed during
runtime, and this metric is called the mis-speculation ratio. A high
mis-speculation ratio can decrease the benefit of speculative
optimization or even degrade performance. In Figure 11, we
observe that the mis-speculation ratio is generally very small. For
gzip, although the mis-speculation ratio is almost 6%, the total
number of check instructions is nearly negligible compared to the
total number of load instructions. Therefore, there is little
performance impact from the high mis-speculation ratio.

0%

5%

10%

15%

20%

25%

ammp art equake bzip2 gzip mcf parser twolf

R
at

io

ldc_chk as a percentage of retired loads mis-speculation

Figure 11. The mis-speculation ratio in speculative register
promotion.

Speculation has a tendency to extend the lifetime of registers.
Register promotion increases the use of registers. The
combination of both effects might increase register pressure,
which could cause more stack registers to be allocated for the
enclosing procedure. More allocated registers may in turn cause
memory traffic from register stack overflows. We have measured
the RSE (Register Stack Engine) stall cycles, but have not
observed any notable increase. Hence, register pressure has not
been an issue from our speculative optimizations in these
experiments.

In the absence of alias profile, we apply heuristic rules in our
speculative analysis framework and use this information for
speculative register promotion. We have performed similar
experiments to evaluate the heuristic version. We found that the
performance of the heuristic version is comparable to that of the
profile-based version.

5.3 Potential Load Reduction
We also evaluate the potential of speculative register promotion
by comparing the number of load reduction currently exploited in
our implementation to the number of speculatively redundant
loads visible at runtime. We used two methods to estimate the

potential load reduction. The first method is simulation-based,
similar to the method used in [2]. It can measure the amount of
load reuses in programs. By analyzing the dynamic stream of
memory references, we can identify all potential speculative
reuses available under a given input. The second method uses the
existing register promotion algorithm, but aggressively allocates
memory references into registers without considering any
potential alias.

In the simulation-based method, we gathered the potential reuses
by instrumenting the compiled program after register promotion
but before code generation and register allocation. In the
simulation, every redundant load is presumed to have its value
already been allocated to a register.

0%

10%

20%

30%

40%

50%

60%

ammp art equake bzip2 gzip mcf parser twolf

L
o

ad
 r

ed
u

ct
io

n
 p

er
ce

n
ta

g
e

simulation method aggressive register promotion

Figure 12. Potential load reduction.

The simulation algorithm assumes a redundant load can reuse a
result of another load or itself. These loads have identical names
(if they are scalars) or identical syntax tree structures. The
memory references with identical names or syntax trees are
classified into the same equivalent classes. redundancies are
detected by tracking the access behavior of each static memory
reference. A redundant load is detected when two consecutive
loads with the same address in an equivalence class load the same
value within the same procedure invocation. We track these loads
by instrumenting every memory reference and recording its
address, value and equivalence class during execution. Figure 12
shows the numbers of potential load reduction by the simulation-
based method and aggressive register promotion, respectively. We
observe that the trend of potential load reduction correlates well
with that of the load reduction achieved by our speculative
register promotion (c.f. Figure 10.) For example, after seeing the
limited potential of gzip in Figure 12, we may not expect a
significant performance gain from speculative register promotion.

6. CONCLUSIONS
In this paper, we propose a compiler framework for speculative
analysis and optimizations. Although control speculation has been
well exploited in existing compiler frameworks, little work has
been done so far to systematically incorporate data speculation
into various program optimizations beyond hiding memory
latency.

The contributions of this paper are as follows: Firstly, we
presented a general compiler analysis framework based on a
speculative SSA form to incorporate speculative information for
both data and control speculation. Secondly, we demonstrate the
use of the speculative analysis in PRE optimizations, which
include not only partial redundancy elimination but also register

promotion and strength reduction. As a result, many optimizations
can be performed aggressively under the proposed compiler
analysis framework. Thirdly, this is one of the first attempts to
feed the alias profiling information back into the compiler to
guide optimizations. The speculative analysis can be assisted by
both alias profile and heuristic rules. Finally, we have
implemented the speculative SSA form, and the corresponding
speculative analysis, as well as the extension of the SSAPRE
framework to use the speculative analysis results. Through the
experimental results on speculative register promotion, we have
demonstrated the usefulness of this speculative compiler
framework and promising performance potential of speculative
optimizations.

 As for future work, we would like to enable more optimizations
under the speculative SSA form to ensure the generality of the
framework and exploit additional performance opportunities. We
would also like to conduct more empirical studies to further
understand the factors that impact the effectiveness of speculative
optimizations.

7. ACKNOWLGEMENT
The authors wish to thank Raymond Lo, Shin-Ming Liu (Hewlett-
Packard) and Peiyi Tang (University of Arkansas at Little Rock)
for their valuable suggestions and comments.

This work was supported in part by the U.S. National Science
Foundation under grants EIA-9971666, CCR-0105571, CCR-
0105574, and EIA-0220021, and grants from Intel.

8. REFERENCES
[1] T. Ball and J. Larus. Branch prediction for free. In

Proceedings of the ACM SIGPLAN Symposium on
Programming Language Design and Implementation, pages
300-313, June 1993.

[2] R. Bodik, R. Gupta, and M. Soffa. Load-reuse analysis:
design and evaluation, In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation, pages 64-76, Atlanta, Georgia, May
1999.

[3] R. Bodík, R. Gupta, and M. Soffa. Complete removal of
redundant expressions. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation, pages 1-14, Montreal, Canada, 17-19
June 1998.

[4] T. Chen, J. Lin, W. Hsu, P.C. Yew. An Empirical Study on
the Granularity of Pointer Analysis in C Programs, In 15th
Workshop on Languages and Compilers for Parallel
Computing, pages 151-160, College Park, Maryland, July
2002.

[5] F. Chow, S. Chan, S. Liu, R. Lo, and M. Streich. Effective
representation of aliases and indirect memory operations in
SSA form. In Proceedings of the Sixth International
Conference on Compiler Construction, pages 253--267,
April 1996.

[6] F. Chow, S. Chan, R. Kennedy, S. Liu, R. Lo, and P. Tu. A
new algorithm for partial redundancy elimination based on
SSA form. In Proceedings of the ACM SICPLAN
Conference on Programming Language Design and

Implementation, pages 273-286, Las Vegas, Nevada, May
1997.

[7] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K.
Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Transactions on
Programming Languages and Systems, 13(4): 451--490,
1991.

[8] D. M. Dhamdhere. Practical Adaptation of the Global
Optimization Algorithm of Morel and Renovise, ACM
Trans. on Programming Languages and Systems, 13(2): 291-
294, 1991.

[9] A. Diwan, K. McKinley, and J. Moss. Type-based alias
analysis, In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation,
pages 106-117, Montreal, Canada, 17-19 June 1998.

[10] C. Dulong. The IA-64 Architecture at Work, IEEE
Computer, Vol. 31, No. 7, pages 24-32, July 1998.

[11] C. Dulong, R. Krishnaiyer, D. Kulkarni, D. Lavery, W. Li, J.
Ng, and D. Sehr. An overview of the Intel IA-64 compiler.
Intel Technology Journal, November 1999.

[12] M. Fernande, and R. Espasa. Speculative alias analysis for
executable code, In Proceedings of International Conference
on Parallel Architectures and Compilation Techniques, pages
222-231, Charlottesville, Virginia, Sept 2002.

[13] R. Ghiya, D. Lavery, and D. Sehr. On the Importance of
Points-To Analysis and Other Memory Disambiguation
Methods for C Programs. In Proceedings of the ACM
SIGPLAN 2001 Conference on Programming Language
Design and Implementation, pages 47-58, Snowbird, Utah,
June 2001.

[14] M. Hind. Pointer analysis: Haven't we solved this problem
yet? In ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, pages 54-61,
Snowbird, Utah, June 2001.

[15] Y.-S. Hwang, P.-S. Chen, J.-K. Lee, and R. D.-C. Ju,
Probabilistic Points-to Analysis, In Proceeding of the
Workshop of Languages and Compilers for Parallel
Computing, Aug. 2001.

[16] R. D.-C. Ju, J. Collard, and K. Oukbir. Probabilistic Memory
Disambiguation and its Application to Data Speculation,
Computer Architecture News, Vol. 27, No.1, March 1999.

[17] R. D.-C. Ju, K. Nomura, U. Mahadevan, and L.-C. Wu. A
Unified Compiler Framework for Control and Data
Speculation, In Proceedings of 2000 International Conf. on
Parallel Architectures and Compilation Techniques, pages
157 - 168, Oct. 2000.

[18] R. D.-C. Ju, S. Chan, and C. Wu. Open Research Compiler
(ORC) for the Itanium Processor Family. Tutorial presented
at Micro 34, 2001.

[19] R. D.-C. Ju, S. Chan, F. Chow, and X. Feng. Open Research
Compiler (ORC): Beyond Version 1.0, Tutorial presented at
PACT 2002.

[20] R. Kennedy, F. Chow, P. Dahl, S.-M. Liu, R. Lo, and M.
Streich. Strength reduction via SSAPRE. In Proceedings of
the Seventh International Conference on Compiler
Construction, pages 144--158, Lisbon, Portugal, Apr. 1998.

[21] R.Kennedy, S. Chan, S. Liu, R. Lo, P. Tu, and F. Chow.
Partial Redundancy Elimination in SSA Form. ACM Trans.
on Programming Languages and systems, v.21 n.3, pages
627-676, May 1999.

[22] K. Knobe and V. Sarkar. Array SSA form and its use in
parallelization. In Proceedings of ACM Symposium on
Principles of Programming Languages, pages 107--120, San
Diego, California, January 1998.

[23] J. Knoop, O. Ruthing, and B. Steffen. Lazy code motion. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages
224-234, San Francisco, California, June 1992.

[24] J. Lin, T.Chen, W.C. Hsu, P.C. Yew, Speculative Register
Promotion Using Advanced Load Address Table (ALAT), In
Proceedings of First Annual IEEE/ACM International
Symposium on Code Generation and Optimization, pages
125-134, San Francisco, California, March 2003

[25] R. Lo, F. Chow, R. Kennedy, S. Liu, P. Tu, Register
Promotion by Sparse Partial Redundancy Elimination of
Loads and Stores, . In Proc. of the ACM SIGPLAN Conf. on
Programming Language Design and Implementation, pages
26--37, Montreal, 1998

[26] E. Morel and C. Renvoise. Global optimization by
suppression of partial redundancies. Communications of the
ACM, 22(2): 96--103, 1979.

[27] pfmon: ftp://ftp.hpl.hp.com/pub/linux-ia64/pfmon-1.1-
0.ia64.rpm

[28] B. Steensgaard. Points-to analysis in almost linear time. In
Proceedings of ACM Symposium on Principles of
Programming Languages, pages 32--41, Jan. 1996.

[29] R.P. Wilson and M.S. Lam. Efficient context-sensitive
pointer analysis for C program. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation, pages1-12, La Jolla, California, Jun 18-
21, 1995.

[30] Y. Wu and Y. Lee. Accurate Invalidation Profiling for
Effective Data Speculation on EPIC processors, In 13th
International Conference on Parallel and Distributed
Computing Systems, Las Vegas, Nevada, Aug 2000.

Appendix A

Algorithm for the enhanced φφφφ insertion which allows
data speculation

Appendix B

Algorithm for the enhanced CodeMotion step which
handles data speculation

procedure φ-Insertion(E)
DF_phis← {};
for each occurrence v of E in program do {
 DF_phis← DF_phis ∪ DF+(v)
 var_phi_list ← {}
 while (v is defined by χχχχ without speculation flags)

v ←←←←the operand of χχχχ
 if (v is defined by φ){

set_def_phi_recursive(phi(v),var_phi_list);
DF_phis← DF_phis ∪ var_phi_list;

 }
 Insert φ for E according to DF_phis
}
end φ-Insertion
procedure set_def_phi_recursive(par_phi, var_phi_list)
if (par_phi ∉ var_phi_list){
 var_phi_list ← var_phi_list ∪ {par_phi}
 for each operand v in par_phi do{
 while (v is defined by χχχχ without speculation flags)
 v ←←←← the operand of χχχχ
 if (v is defined by φ)
 set_def_phi_recursive(phi(v), var_phi_list);
 }
}
end set_def_phi_recursive

procedure CodeMotion(E) {
...
 for each occurrence p of expression E in post-order DT
 traversal order do{
 if (speculative(p) is true &&
 (p is marked with reload or p is a φφφφ operand of a
 φφφφ occurrence marked with will_be_avialbe))
 Set_speculative_check_flag (p)
 }
}
end CodeMotion

procedure Set_speculative_check_flag (p)
q ←←←← avail_def (p)
D ←←←← defining statement of p
if (the check statement for p not yet generated for D) {

generate an assignment statement stmt which is a save
of the computation E after D;

 speculative_check(stmt) ←←←← advance load check flag for
ld.c
 if (E is an indirect reference){
 a ←←←← the address expression of p
 if (a is defined by a speculative check statement s)
 speculative_check(s) ←←←←advance load check flag
for chk.a
 }
 if (q is real occurrence or inserted occurrence)
 speculative_load(q) ←←←← advance load flag
}
else if (q is φφφφ occurrence){
 phi_list ←←←← {}
 Set_speculative_load_flag(phi(q), phi_list)
}
end Set_speculative_check_flag

procedure Set_speculative_load_flag (par_phi,phi_list)
phi_list ←←←← phi_list ∪∪∪∪ {par_phi}
for (each operand q of par_phi){
 if avail_def(q) is a φφφφ occurrence and q ∉∉∉∉ phi_list
 Set_speculative_load_flag(q, phi_list)
 else if avail_def(q) is a real or inserted occurrence{
 r ←←←← avail_def (q)
 speculative_load(r) ←←←← advance load flag
 }
}
end Set_speculative_load_flag

