
 1

A Region-Based Compilation Infrastructure1

Yang Liu Zhaoqing Zhang Ruliang Qiao
Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080, PRC

{ly,zqzhang,qrl}@ict.ac.cn

Roy Dz-ching Ju
Microprocessor Research Labs, Intel Labs, Santa Clara, CA 95052, USA

roy.ju@intel.com

1 This project is supported by Intel Corporation and Nation Foundation of Natural Sciences 69933020.

Abstract:
The traditional framework for back-end compilation is

based on the scope of functions, which is a natural

boundary to partition an entire program for compilation.

However, the sizes and structures of functions may not be

the best scope for program analyses and transformations

when considering compilation resources (e.g. time and

space), performance, and functionality. This problem is

particularly pronounced when modern compiler

optimizations resort to sophisticated and expensive

algorithms to aim at high performance computing.

Furthermore, it is often beneficial to give priority to

optimize the more profitable portions of programs. Earlier

works have proposed ways to allow some control on the size

and structure of optimization scope. In this paper, we

develop a new region-based compilation framework driven

by the considerations of performance opportunities and

compilation resources. In addition, we allow some

optimization-directed attributes communicated from one

optimization phase to another on a region basis to guide

subsequent optimizations. This region-based framework

has been implemented in the Open Research Compiler

targeting Itanium Processor Family (IPF). Experimental

results from the SPEC2000Int programs show that this

infrastructure provides an effective control on forming

regions to meet the requirements of different optimizations.

For example, the compilation time of instruction scheduling

is significantly reduced by this region formation

infrastructure while preserving or improving the overall

performance. At the highest optimization level, the

performance of eon program has a 15.6% improvement by

employing this region-based infrastructure.

Keywords:
Region, Interval, Single-Entry-Multiple-Exit (SEME)
Region, Multiple-Entry-Multiple-Exit (MEME)
Region, and Compiler Optimization

1 Introduction

In order to exploit higher level of instruction
level parallelism (ILP), modern compilers often
resort to sophisticated and expensive program
analyses and transformations, which typically
consume substantial amounts of compilation time and
memory usage. One way to keep the resource usage
under control is to partition the traditional
optimization scope of functions into smaller program
regions, because these expensive algorithms typically
have a complexity higher than linear with respect to
the size of optimization scope. The notion of regions
has been used in the past mostly restricted to
particular optimization phases, such as code
scheduling and register allocation. A region is
informally defined as connected components in a
control flow graph (CFG). Various regions have been
proposed in previous work. Examples include trace
[1], superblock [2], hyperblock [3], and region
proposed by Hank et al [4][5].

To construct a flexible and general region-based
compilation framework suited for different
optimization phases, there are at least the following
four aspects of a region should be considered.
a. Region size: The size of a region needs to be

sufficiently large to obtain enough performance

 2

opportunities but not too large to consume
substantial compilation resources.

b. Region shape: The shape of a region also has a
significant impact on the effectiveness of many
optimizations. For example, a linear region
provides no opportunity for if-conversion.

c. Side entries to regions and tail duplication:
Many optimizations prefer to operate on
single-entry-multiple-exit (SEME) regions,
where side entries can be eliminated through tail
duplication [2][3]. However, excessive code
duplication greatly increases the code size, which
may have an adverse effect on the efficiency of
I-cache and hence program performance.
Therefore, the amount of tail duplication must be
controlled in order to avoid excessive code
expansion.

d. Region-specific characteristics: Different parts
of a program may have their specific
requirements or characteristics to be observed
during optimizations. A region provides a good
boundary to annotate and observe these
characteristics. For example, it may be desirable
to specify a region to be processed by certain
phases, but not by the others.
In this paper, a flexible and general region-based

compilation infrastructure is proposed to address the
requirements listed above. It partitions programs into
regions as the optimization scope and has been
implemented in an IPF Open Research Compiler
(ORC). ORC is based on the open source Pro64
compiler from SGI and provides users a powerful and
efficient framework with many new infrastructure
features and IPF optimizations. Both its performance
and compilation time are comparable to that of an IPF
production compiler.

This infrastructure has the following important
features:
a. Sizes and shapes of optimization scope can be

controlled to meet the needs of different
optimization phases. Code duplication ratios can
be controlled during the process of SEME region
formation in order to avoid excessive code
expansion.

b. All of the analysis and optimization phases in the

backend can operate under the region framework
according to our design. This provides a uniform
scope for optimization opportunities and
compilation efficiency.

c. Regions with specific characteristics can be
maintained and observed when processed across
different phases. Maintaining and observing
region-specific characteristics is a new
requirement to our region-based compilation
framework and has not been addressed in the
previous work

d. The region framework is flexible, and it allows
regions to be constructed, deleted, and
reconstructed at different phases in the backend.
If users choose to, the regions can also be
constructed once and used throughout the rest
phases with incremental updates.
We show that this framework is effective in

reducing compilation time and improving
performance through 12 SPEC2000Int programs on
Itanium machines. Compilation time is reduced
significantly, especially when inter-procedural
analysis (IPA) and function inlining (thereafter
referred to as the peak mode) are enabled. For
program crafty, compilation time of instruction
scheduling with region formation is reduced by
63.9%. At the same time, the performance of these
programs is improved greatly with region formation.
Compared with the performance without region
formation, the performance with region formation is
improved by about 15.6% for eon and 7.8% for
crafty with an average of 3.6% at the peak mode. It
demonstrates that this infrastructure provides a
flexible control on forming regions to meet the needs
of different optimization phases.

The rest of this paper is organized as follows. In
Section 2, the structures of regions are described in
detail. The definitions of different region types and
attributes are given. Section 3 discusses the region
formation algorithms used to form different kinds of
regions. Section 4 shows our experimental results.
Section 5 discusses the related work. In Section 6, we
summarize this paper and point out future work.

 3

2 Definitions and Structure of Regions
Under our proposed region framework, the size,

shape, duplication ratio and the characteristics of
regions can be controlled, and users are able to
partition the programs into compilation units with
desired size and properties for different analysis and
optimizations.
2.1 Structure of the Regional Control Flow Graph

Regions are composed of a set of connected
nodes and edges. Each node in the region represents
either a nested region or a basic block. A directed
edge is an edge connecting two nodes and represents
the control flow transfer from the source node to the
target node. Every region has a local control flow
graph called regional control flow graph. Every edge
has the profiling information of its execution
frequency and probability attached. The back edge in
a loop region is also removed from its regional CFG
but is recorded separately in the region.

Figure 1 shows an example of regional CFG. The
nodes of the loop shown in Figure 1(a) form a region,
and the regional CFG becomes the one in Figure 1(b).
The node R1 represents a nested region, which is
formed for the loop of nodes {2,3}.
2.2 Structure of Regions

Relations among regions are organized
hierarchically as a tree structure. This tree is called
region tree. Root of the region tree is the outermost
region, which corresponds to a whole function. Leaf
nodes in the region tree represent the innermost
regions.

1

R1

(a) Regional CFG of R2
before interval process

(b) Regional CFG of R2
after interval process

4

2

3

4

1

Figure 1 Regional CFG example

The nesting relationship between regions is
represented as a parent-child relationship in the
region tree. Here we also call a nested region a kid

region. For example, region R1 in Figure 1(b) is a
nested region of R2, i.e. a kid region of R2. The
corresponding region tree is shown in Figure 2. R1 is
R2’s kid region, and R2 is R1’s parent region.

R1

R2

Figure 2 Region tree structure

 2.3 Types of Region
In our framework, regions are classified into four

types:
 Loop Region
 Improper Region
 Single-Entry-Single-Exit Region (SEME

Region)
 Multiple-Entry-Multiple-Exit Region

(MEME Region)
The four types of regions are described in detail

below.
Loop Region Cycles in CFG become a structure
boundary for regions. A loop region has a single
entry, and the loop body is usually regarded
frequently executed.
Improper Region Improper region contains
irreducible control flow sub-graph. The cycle
that contains the irreducible graph forms an
improper region. Since irreducible graphs
account for only a small portion of all programs
and usually present limited optimization
opportunities, they will be marked improper and
treated specially by later optimization phases.
For any region other than an improper region, its
regional CFG is guaranteed to contain no cycles.
SEME Region SEME region is a region with
single entry and multiple exits with possible
control flow transfer within the region.
MEME Region MEME region has multiple
entries and multiple exits also with possible
control flow transfer within the region.

Unlike loop and improper regions, SEME
and MEME regions are not formed due to any
structure constraints, and instead they are formed
usually by considering the following factors.

 4

 Exit Probability
An SEME or MEME region can have

multiple exits. The exit node with the max
completion probability is the main exit node.
The completion probability of an exit is
defined as the possibility of the control flow
going through this exit node while leaving the
region. The completion probability of the main
exit node is the main exit probability. Main exit
probability is of importance to some
optimizations and the shape of regions. For
example, in the thread speculation in
multi-threading parallelism, the benefit is
largely affected by the main exit probability.

 Duplication ratio
The amount of duplicated codes e.g. from tail
duplication, can be controlled by a duplication
ratio in the process of forming SEME or
MEME regions. Code duplication may
increase optimization opportunities, but
excessive code replication can have adverse
effect, e.g. reducing the efficiency of I-cache.
The trade-off can be controlled by this
duplication ratio.

 Region Size
If a region is too large, the compilation

time and space may become unacceptable. On
the contrary, a small region may present too
few optimization opportunities and reduce the
optimization efficiency. The parameter of
region size can be set as an upper bound while
forming regions.

2.4 Attributes of Regions
Region attributes are proposed in order to keep

the specific properties of regions consistent across
different analysis and optimization phases. We
currently have four kinds of attributes.

Persistent Boundary
Regions with this attribute must keep

boundary persistent in different optimization
phases. They can be divided into smaller regions,
but their boundary restriction could not be
violated, i.e., the entries and exits of a region
cannot be changed. The purpose of this attribute
is to protect the regions from being decomposed

or combined with other regions. For example, an
if-conversion phase may perform predication on
the current region, and if this region is combined
with other regions, it might make a later analysis
of predicates generated from different regions
less precise.
Rigid

Rigid region means the region cannot be
decomposed any further. In different
optimization phases, regions with this attribute
must be kept as a whole. For example, the basic
blocks in a region are if-converted to provide
more instruction scheduling opportunities. If the
region that has been if-converted is decomposed
into smaller regions, some code motion
opportunities will be lost. The rigid attribute will
prevent the intermediate phases from
decomposing the regions.
No Further Optimization

Once this attribute is set, no further
optimization or decomposition can be performed
to the region. Regions with this attribute must be
kept intact in later optimization phases of
compilation. This attribute is set for the reason
that some regions have already been optimized
and do not want any additional change. For
example, a region already been software
pipelined can be formed with this attribute to
avoid being changed by later phases.
No Optimization Across Region Boundary

Any optimization across region boundary is
inhibited. For example, removing two redundant
computations from different regions (including
nesting regions) with this attribute marked on
either region is disallowed. Optimizations within
the region boundary are allowed. This attribute
ensures no changes in the live-in and live-out
information of regions. For example, if a region
is formed for multi-threading parallelism, its
live-in and live-out sets may have been
determined at the time of formation. We do not
want subsequent phases to changes these sets,
but we still want optimizations to be performed
within the marked region boundary.

 5

3 Formation of Regions
The region formation process can be divided into

two steps. First, the root region is formed and
intervals are identified and processed. In this
framework, intervals include loops and irreducible
strongly connected components, which are formed
into loop regions and improper regions, respectively.

The next step is to decompose large regions into
smaller SEME or MEME regions. Any region has a
size greater than the max region size limitation will be
decomposed into smaller regions to satisfy the
constraint.
3.1 Formation of Intervals

Here the intervals include loops and irreducible
strongly connected components. Loops are
boundaries for many ILP optimizations and are
identified first from the root region’s regional CFG.
Next, irreducible sub-graphs are detected and formed
as improper regions.

The whole function is formed as a root region,
and the global CFG is initially mapped to the root
region’s regional CFG. Cycles and back edges are
computed using the algorithm described in [9]. A
back edge is an edge with its source node dominated
by its target node.

The regional CFG of the root region is traversed
in a reverse preorder sequence to shrink loops from
innermost to outermost. When the target node of a
back edge is visited through a cycle, the back edge is
identified and the respective loop scope is formed a
loop region. All nodes in kid region shrink to one
region node in parent region’s regional CFG and
control flow edges from these nodes are connected to
the region node. The newly formed kid region is
connected to the region tree.

Since each natural loop has reduced to a single
region node in the regional CFG of their parent region,
the strongly connected components (SCCs) left in the
regional CFG must be due to irreducible control flow
sub-graph. They are formed as improper regions.
3.2 Algorithm to Form MEME Regions

In our framework, because most optimization
phases in backend are implemented based on SEME
regions, MEME region formation is only an
intermediate process of SEME region formation. But

users could choose to form MEME regions only
without SEME region formation for their needs. Our
algorithm is detailed in Figure 3.

Like Hank’s MEME region formation algorithm
[4][5], the most frequently executed node is selected
as a seed. Next, a path from the most frequent
successor satisfying the following equation is
extended from the seed. This process continues until
the successor path can no longer be extended.









≥








≥

→
= _

)(
)(&&

)(
)(),(T

seedW
yWT

xW
yxWyxSucc

T and T_ are threshold values selected by a compiler.
Similarly, Pred(x,y) is defined and a path of the most
frequent predecessors is added next. The resulting
seed path is further extended by selecting all most
frequent successors satisfying Succ(x,y) from every
node in the region. Selected nodes will then be added
to the region and this process will continue until no
node can satisfy Succ(x,y).

In order to make the formed MEME regions more
suitable for forming SEME regions with reasonable
scope when exit probability and tail duplication ratio
is required, we do two improvements on Hank’s
MEME region formation heuristics.

The first is that, though a similar selection of the
seed path, a control on the length of seed paths is
added, i.e., the seed path’s length could not exceed
size/a, where size is the max region size limitation
and a is a threshold value greater than 1 selected by
the compiler. It gives the seed path some chance to
grow wider in order to avoid the shape of a thin trace.

As mentioned before, in our framework, the
MEME region formation is a base for the SEME
region formation to be described later. If the chosen
MEME region has many side entries and we cannot
afford a large code duplication ratio, the formed
SEME regions may have a small size. Regions of
small sizes usually significantly limit the
opportunities to different optimizations. In order to
reduce the scenario of many side entries, our
approach makes a tradeoff between the shape of
regions and execution frequency. When extending
from the seed path, the nodes most frequently
connected to the region are selected instead of always
the most frequent successors (see function Weight in

 6

Figure 3). Hence, our algorithms can usually select
regions with larger sizes and more desirable shapes
without heavily relying on tail duplication.

Figure 3 Algorithm of forming MEME regions

3.3 Algorithm to Form SEME regions
Instead of the more general MEME regions,

many optimizations work effectively under SEME
regions by retaining most optimization opportunities
and without overly complex algorithms. Therefore,
SEME region formation is of great importance. This
paper proposed a new algorithm to form SEME
regions by taking into account the code duplication
ratio, exit probability, and max region size as outlined
in Section 2.3. Our algorithm of selecting SEME
regions is detailed in Figure 4.

Because exit probability and tail duplication ratio
requirements, this SEME region formation algorithm

is more complex. Algorithm begins from procedure
Find_SEME_Region. First an MEME region is
selected by calling procedure Find_MEME_Nodes
with the algorithm described in Figure 3. For each
node in the MEME region, we compute the scope if it
is a main exit node by calling
Compute_Scope_Base_On_Main_Exit.

Then, for each scope in MEME region, compute
the main exit probability and compare it with the
main exit probability requirement. For every scope
which could satisfy the exit probability, compute the
duplication ratio if tail duplication is allowed. If the
code expansion exceeds the limit of duplication ratio,
some dangling nodes are cut from the scope to reduce
code expansion. This process will continue until the
tail duplication ratio requirement is satisfied. Finally,
a scope with max size is selected as the base to be tail
duplicated. Then tail duplication is done to the scope
and an SEME region is formed.
3.4 Discussions

In our framework, all regions are optimized one
by one in the backend optimization phases. Most of
these phases, e.g. instruction scheduling, have an
O(n2) time complexity, where n is the number of
instructions. By controlling the size of n in each
region, the compilation time for optimizations based
on SEME regions can be well constrained. By
limiting the scope of optimizations to each region, for
example instruction scheduling can only move
instructions from one basic block to another within
the same region. This could prevent instructions from
being moved from basic blocks of very low execution
frequency to those frequently executed ones so that
optimizations can concentrate on regions with high
execution frequency.

In our framework, we proposed a novel type of
SEME regions controlled by tail duplication ratio and
exit probability. SEME regions with single entries
simplify the algorithm of many optimization phases,
therefore reducing the development efforts and
usually compilation time as well. With the flexible
algorithm, users can set the parameters of tail
duplication ratio and exit probability to adjust the
shape of formed SEME regions to maximize the
effectiveness of various optimizations.

Find_MEME_Nodes(int size,regional_cfg cfg) {
 node_set R=∅;
 seed = the most frequent node in cfg;

 /* a is a threshold value defined by compiler */
 length = size / a;

 /* extend from seed to a seed path */
 x = seed;
 y = most frequent successor of x;
 while ((Size(R) < length) &&
 (y ∉ R) && Succ(x,y)){
 R = R∪{x};
 x = y;
 y = most frequent successor of x;
 }

 x = seed;
 y = most frequent predecessor of x;
 while ((Size(R) < length) &&
 (y ∉ R) && Pred(x,y)){
 R = R∪{x};
 x = y;
 y = most frequent predecessor of x;
 }

 /* expand seed path to a region */

while (Size(R) < size) {
 max_weight = 0;
 for every node n ∈ R {
 for every succ of n and succ ∉ R {
 weight = Weight(succ);
 if weight > max_weight cand = succ
 }}

 R = R∪{cand};
 }
}

Weight(node x) {
 int weight=0;
 for every predecessor y of x {
 if (y∈R) {
 weight = weight + Edge_Freq(y→x);
 }}

 for every successor y of x {
 if (y∈R) {
 weight = weight+ Edge_Freq(x→y);
 }}
}

 7

Figure 4 Algorithm of forming SEME regions

4 Experiments
4.1 Implementation

Our region formation guided with profiling
feedback is implemented as an early phase in the
backend of ORC compiler. The majority of the phases
in the backend operate under the region framework,
and these include instruction scheduling,
if-conversion, predicate analysis, software pipelining,
loop unrolling, extended basic block optimizations,
control flow optimizations, etc. Most of these
optimizations perform effectively under SEME and
loop regions. MEME regions is implicitly performed
as part of forming SEME regions. Users of ORC can
choose to construct MEME regions according to their
requirements. Region attributes are created and
checked to meet the need of the current
implementation. Current settings of related
parameters are: the maximum region size 20, the
minimum exit probability 0, and no tail duplication.

Most of the optimization phases under the region
framework make effective uses of the region scope to
guide their optimizations. For example, if-conversion
phase looks for patterns within SEME regions to
identify candidate basic blocks for if-conversion. A
subsequent predicate analysis phase analyzes the
relations of predicates in individual SEME regions,
which match the scope of the if-conversion without
paying excessive compilation resources.

The instruction scheduler in ORC is extended
based on the work proposed by D. Bernstein et al [13]
to perform on SEME regions and performs
partial-ready code motion [14]. The scheduler also
makes use of predicate analysis to effectively
schedule predicated code. So, forming regions with
suitable sizes and shapes for this scheduler is very
important. When region formation is turned off in the
subsequent experiments, the scopes for the
optimization phases are loops or functions as in a
traditional compilation framework.
4.2 Results and Evaluation

The hardware platform for experiments is an
Itanium workstation with the processor speed of
733MHz and a 2M L3 cache. We use 12
Spec2000INT programs to evaluate the compilation
time and performance. Because instruction

float max_duplicate_ratio,min_exit_prob; int size;

Find_SEME_Nodes(regional_cfg cfg){
 node_set MEME_R = Find_MEME_Nodes(size,cfg);
 node_set R = ∅;

 for every node x ∈MEME_R {
 R' = Compute_Scope_Base_On_Main_Exit(x);
 exit_prob = Compute_Main_Exit_Prob(R',x);
 if (exit_prob > min_exit_prob) {
 dup_ratio = Compute_Duplicate_Ratio(R');
 if (dup_ratio > max_duplicate_ratio) {
 R'= Do_Selective_Cut(R',x);
 if Weight(R') > Weight(R) {

R = R';
}}}}

 return R;
}

Compute_Scope_Base_On_Main_Exit(node main_exit,

node_set R){
 node_set del_nodes=∅;

 for every succeccor x of main_exit {

del_nodes = del_nodes∪{x}; }
 for every node x in depth first traverse order of R {
 if all predecessors of x are in del_nodes {

del_nodes = del_nodes∪{x};
 }}

 R=R-del_nodes;
 return R;
}

Compute_Main_Exit_Prob(node_set R,node main_exit){

/* Because tail duplication will change edge frequency of
nodes to be duplicated, we must recompute them first */

 if there is any side entry to R {
for every node x∈R in toplogical traverse order of R {

for every edge e of x{
 recompute frequency of e if tail duplicate is done;

}}}

 total_freq = 0; exit_freq = 0;
 for every node x∈R {
 for every successor y of x {
 if y ∉ R {
 total_freq = total_freq + Edge_Freq(x→y);
 }}}
 for every successor y of main_exit {
 exit_freq = exit_freq + Edge_freq(main_exit→y); }
 return exit_freq/total_freq;
}

Do_Selective_Cut(node_set R,node main_exit){
 dangle_node_list = ∅;
 while (ratio > max_duplicate_ratio) {
 for every node x∈R {
 if (all successors of x ∉ R && x!=main_exit) {
 dangle_node_list = dangle_node_list∪{x};
 }}}
 if (dangle_node_list = = ∅) { return null; }
 d =least frequent node in dangle_node_list;
 R= R- {d};
 ratio = Compute_Duplicate_Ratio(R);
 }
 return R;
}

Compute_Duplicate_Ratio(node_set R){
 dup_nodes = all nodes should be duplicated in

 order to eliminate side entries;

 return Size(dup_nodes)/Size(R);
}

Weight(node_set R){
 int weight=0;
 for every node x∈R {
 weight = weight + number of ops in x*Freq(x); }
 return weight;
}

 8

scheduling is the most time consuming phase in the
ORC backend, it is chosen to evaluate the effect of
region formation on compilation time.

Figure 5 and Figure 6 compare the performance
and compilation time of instruction scheduling at the
peak optimization level, respectively, where the peak
mode includes inter-procedural analysis (IPA) and
function inlining in addition to O3 (all
intra-procedural optimizations) and edge profiling
feedback. (Due to space limitation, we are unable to
show the comparison at different optimization levels.)
The percentage of performance improved by region
formation is computed using the following equation:

100%
runtime

runtimeruntimep
regionwithout

regionwithregionwithout
×

−
=

_

__

Similarly, the equation used to compute the
percentage of compilation time reduced by region
formation is:

100%
ecompiletim

ecompiletimecompiletimp
regionwithout

regionwithregionwithout
c ×

−
=

_

__

Figure 5 shows the performance comparison.

Many programs have significant performance
improvements when region formation is enabled.
Eon has more than 15.6% performance
improvement under region formation. Crafty,
perlbmk, parser and vortex have their performance
improved by 7.8%, 6.5%, 3.6% and 3%, respectively.
Frequently executed basic blocks, which may spread
across different functions before inlining, are placed
into the same regions, and region-based optimizations
can effectively optimize these highly profitable
regions. Only gzip degrades a slight 1.4%. The
average performance gain reaches 3.6% when region
formation is enabled.

Figure 6 shows that forming regions has greatly
reduced the compilation time of instruction
scheduling. At the peak mode, region formation is
important in reducing compilation time. For example,
crafty’s compilation time under region formation is
reduced by 63.9% compared to that without region
formation. This can be understood that the functions
in the Spec2000INT programs often have large
scopes containing a large number of basic blocks,
which make some complex algorithms, such as

instruction scheduling, suffer a long compilation time.
IPA and inlining make this situation worse. Region
formation decomposes large functions into smaller
units to limit the optimization scope for expensive
algorithms and hence reduce compilation time.
Figure 7 shows the compilation time of backend
reduced by region formation at the peak mode.

-4.00%

-2.00%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

gz
ip vp

r
gc
c

mc
f

cr
af
ty

pa
rs
er eo

n

pe
rl
bm
k ga

p

vo
rt
ex

bz
ip
2

tw
ol
f

Figure 5 Spec2000Int Percentage of Performance

Improved by Region Formation at Peak (the average

improved by 3.6%)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

gz
ip vp

r
gc
c

mc
f

cr
af
ty

pa
rs
er eo

n

pe
rl
bm
k ga

p

vo
rt
ex

bz
ip
2

tw
ol
f

Figure 6 Spec2000Int Percentage of Instruction

Scheduling Compilation Time Reduced by Region

Formation at Peak (the average reduced by 52.8%)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

gz
ip vp

r
gc
c
mc
f

cr
af
ty

pa
rs
er eo

n

pe
rl
bm
k ga

p

vo
rt
ex

bz
up
2

tw
ol
f

Figure 7 Spec2000Int Percentage of Backend

Compilation Time Reduced by Region Formation at

Peak (the average reduced by 46.1%)

 9

From the implementation and data we can see
that this infrastructure has a good control on forming
regions to meet the requirements of different
optimizations. Although decomposing functions into
smaller units limits the optimization scope of many
phases, it does not limit the effectiveness of these
optimizations and instead contributes to good
performance gains at the peak mode.

5 Related Work
 In trace scheduling [1], Fisher proposed linear

execution paths called traces as the scope for code
scheduling. Fisher’s traces may have multiple entries,
and this leads to some complexities in ILP
optimizations and code scheduling. In order to
eliminate the side entries, superblock is proposed by
Hwu et al in [2]. Superblocks are constructed based
on execution profile information. Tail duplication is
used in the superblock formation algorithm in order to
eliminate side entries. Treegion [6], also targeting
code scheduling, has the region shape of basic blocks
connected as a tree structure. Treegion formation is
not based on profile information but on the control
flow analysis. No merge points exist within a treegion,
which reduces the bookeeping in code scheduling.
Region scheduling [7] uses an extended program
dependence graph to partition programs into regions
that have the same control conditions. In the extended
program graph in [7], regions are organized in a
hierarchical structure. Register allocation based on
regions was also attempted in [4][8].
Comparison with Hank’s Work

Hank used the notion of regions in various
optimization phases to balance between performance
opportunities and compilation resources [4][5]. Some
optimizations based on regions were discussed, and
an MEME region formation algorithm was presented.
In their work, two aspects were compared between
region-based compilation and function-based
compilation: compilation time and code quality. In
contrast, our region structure is different from Hank’s
and our work also provides additional contributions
as follow.

I. In our framework, an SEME region formation
algorithm with exit probability and tail

duplication ratio control is proposed. This is
totally different from the regions formed in
Hank’s framework, which concentrates on
MEME region formation. SEME regions are the
more effective scope for many optimizations.
II. We partition the whole program into regions,
where every basic block is contained in a region.
Hank’s algorithm chooses only some basic
blocks with high execution frequency to form
regions. Furthermore, Hank’s region structure is
a flat one, without nested regions except for
loops. In our framework, a region could nest in
another region, and all regions are organized
hierarchically.
III. In our framework, four region attributes are
proposed. These attributes are checked and
maintained across various optimization phases,
and they carry important optimization-guiding
information on a per-region basis.
IV. In our work, the performance from real
machines with and without region formation is
compared to demonstrate the effectiveness of a
region-based infrastructure. Hank et al did not
have measurements on execution performance.

6 Conclusions and Future Work
In this paper we proposed a flexible and general

region formation infrastructure, and it has a number
of features and advantages over prior work. With
enhanced heuristics to form regions, our algorithm
forms SEME regions of the shapes with a better
balance between height and width, which are more
suited to many advanced global optimizations and
analyses. Exit probability and region size are used to
control the size and shape of the regions formed. Our
algorithm applies tail duplication judiciously to avoid
excessive code size increase and adverse I-cache
effect while forming effective regions.

This region framework has been developed in the
backend of ORC to drive various optimization and
analysis phases, and can be further extended to the
whole compiler. Region attributes are proposed to
annotate the properties of each region and
communicate information from one phase to another
on a per-region basis. The region structure can be

 10

deleted and reconstructed at various phases.
Experiments show that performance is often
improved under region formation. Compilation time
has also been reduced dramatically under region
formation.

Although this infrastructure forms effective
regions, the data dependence relationships across
regions are not currently captured, which is useful to
perform analysis across region boundary. We would
like to form regions with a more sophisticated
analysis of CFG and data dependence graph. In the
meantime, more work need to be done to keep region
attributes intact when processing across phases. We
are also using this region-based infrastructure to build
a compiler for multi-threaded architectures.

Reference
[1] J. Fisher, "Trace scheduling: a technique for

global microcode compaction", IEEE Trans. on
Computers, Vol. No. 7, pp. 478-490, 1981.

[2] W.W. Hwu,et al, "The Superblock: An effective
way for VLIW and superblock compilation",
The Journal of Supercomputing, vol. 7, pp.
229-248, January 1993.

[3] S. A. Mahlke, D. C. Liu, W. Y. Chen, R. E. Hank
and R. A. Bringmann, "Effective compiler
support for predicted execution using the
hyperblock" In Proceedings of 25th International
symposium of Microarchitecture,
pp45-54,1992.

[4] R. E. Hank, "Region Based Compilation",
Doctoral thesis, University of Illinois at Urbana
Champaign,1996.

[5] R. E. Hank, W. W. Hwu and B. R. Rau, "Region
Based Compilation:Introduction, Motivation
and Initial Experience", International Journal of
Parallel Programming, 25(2):113-146, Apr,
1997.

[6] W. A. Havanki, "Treegion scheduling for VLIW
processors", MS Thesis, Dept.of Electrical and
Computer Engineering, North Carolina State
University, Raleigh, NC, 1997.

[7] M. Gupta and M. L. Soffa, "Region Scheduling",
IEEE Trans. on Software Engineering, vol. 16,
pp. 421-431, April 1990.

[8] R. Gupta, M. L. Soffa and D. Ombres, "Efficient
Register Allocation via Coloring Using Cluque
Separators", ACM Trans. On Programming
Languages and Systems, Vol. 16,
pp370-386,May 1994.

[9] A. Aho, R. Sethi and J. Ullman, "Compilers:
Principles, Techniques, and Tools",
MA:Addison-Wesley, 1986.

[10] J. R. Allen, K. Kennedy, C. Porterfield, and J.
Warren, "Conversion of control dependence to
data dependence" In Proceedings of the 10th
ACM Symposium on Principles of
Programming Languages, pp. 177-189, January
1983.

[11] Richard Johnson and Michael Schlansker.
"Analysis techniques for predicated code" In
Proceedings of the 29th Annual International
Symposium on Microprogramming, pages
100-113, December 1996.

[12] D. M. Gillies, D. R. Ju, R. Johnson, and M.
Schlansker, "Global predicate analysis and its
application to register allocation" In
Proceedings of the 29th International
Symposium on Microarchitecture, pp. 114-125,
December 1996.

[13] D. Bernstein, D. Cohen, and H. Krawczyk,
"Code Duplication: An Assist for Global
Instruction Scheduling" In Proceedings of 24th
Annual ACM/IEEE Intl. Symp. and Workshop
on Microarchitecture,1991.

[14] J. Bharadwaj, K. Menezes, and C. McKinsey.
"Wavefront scheduling: Path based data
representation and scheduling of subgraphs" In
Proceedings of 32nd Ann. Int'l Symp.
Microarchitecture (MICRO32), December,
1999.

